Job Search MCP Server

Job Search MCP Server

Enables searching for AI/ML internships and entry-level positions across multiple job sites including LinkedIn, Indeed, Glassdoor, ZipRecruiter, and Monster. Automatically filters for Python proficiency and relevant AI/ML skills while providing structured job data with application URLs and detailed requirements.

Category
访问服务器

README

Job Search MCP Server

An MCP (Model Context Protocol) server that searches across multiple job sites for AI/ML internships and full-time roles with specific filtering criteria.

Features

  • Multi-site Job Search: Searches LinkedIn, Indeed, Glassdoor, ZipRecruiter, and Monster
  • AI/ML Focus: Specifically targets artificial intelligence and machine learning positions
  • Smart Filtering:
    • Filters for entry-level positions (less than 1 year experience)
    • Requires Python proficiency
    • Supports both internships and full-time roles
  • Real-time Results: Gets the latest job postings from all sites
  • Structured Data: Returns well-formatted job information with all relevant details

Installation

  1. Clone or download this repository

  2. Install dependencies:

    npm install
    
  3. Build the project:

    npm run build
    

Usage

Running the Server

npm start

Or for development:

npm run dev

Available Tools

1. search_ai_ml_jobs

Search for AI/ML jobs across all supported job sites.

Parameters:

  • location (string, optional): Job location (default: "Remote")
  • maxResults (number, optional): Maximum results to return (default: 50)
  • includeInternships (boolean, optional): Include internships (default: true)
  • includeFullTime (boolean, optional): Include full-time roles (default: true)
  • keywords (array, optional): Additional search keywords

Example:

{
  "location": "San Francisco, CA",
  "maxResults": 25,
  "includeInternships": true,
  "includeFullTime": true,
  "keywords": ["deep learning", "NLP", "computer vision"]
}

2. search_specific_job_site

Search for jobs on a specific job site.

Parameters:

  • site (string, required): Job site ("linkedin", "indeed", "glassdoor", "ziprecruiter", "monster")
  • location (string, optional): Job location (default: "Remote")
  • maxResults (number, optional): Maximum results to return (default: 25)

Example:

{
  "site": "linkedin",
  "location": "Remote",
  "maxResults": 20
}

Job Filtering Criteria

The server automatically applies the following filters:

For Full-time Roles:

  • Experience Level: Entry-level (less than 1 year experience)
  • Required Skills: Must include Python proficiency
  • Job Type: AI/ML related positions only

For Internships:

  • Job Type: AI/ML related positions only
  • Skills: Python proficiency preferred

AI/ML Keywords Detected:

  • Machine Learning
  • Artificial Intelligence
  • Data Science
  • Deep Learning
  • NLP (Natural Language Processing)
  • Computer Vision
  • Neural Networks
  • TensorFlow, PyTorch, Scikit-learn

Response Format

The server returns structured job data including:

{
  "results": [
    {
      "site": "LinkedIn",
      "jobs": [
        {
          "id": "unique_job_id",
          "title": "Machine Learning Engineer",
          "company": "Tech Company",
          "location": "San Francisco, CA",
          "type": "full-time",
          "experienceLevel": "entry",
          "description": "Job description...",
          "requirements": ["Python", "Machine Learning"],
          "skills": ["python", "tensorflow", "pytorch"],
          "postedDate": "2024-01-15T10:30:00Z",
          "applicationUrl": "https://...",
          "source": "LinkedIn",
          "isRemote": false,
          "hasPythonRequirement": true,
          "isAIMLRelated": true
        }
      ],
      "totalFound": 1,
      "searchTime": 1500
    }
  ],
  "totalJobs": 1,
  "searchTimestamp": "2024-01-15T10:30:00Z",
  "filters": {
    "location": "San Francisco, CA",
    "maxResults": 50,
    "includeInternships": true,
    "includeFullTime": true,
    "keywords": [],
    "experienceLevel": "entry",
    "requiredSkills": ["python"],
    "jobTypes": ["ai", "ml", "machine learning", "artificial intelligence", "data science"]
  }
}

Configuration

Copy env.example to .env and modify as needed:

cp env.example .env

Available configuration options:

  • RATE_LIMIT_PER_MINUTE: Rate limiting for requests (default: 30)
  • REQUEST_TIMEOUT: Request timeout in milliseconds (default: 30000)
  • USER_AGENT: User agent string for web scraping

Supported Job Sites

  1. LinkedIn - Professional networking and job board
  2. Indeed - General job search engine
  3. Glassdoor - Job search with company reviews
  4. ZipRecruiter - Job matching platform
  5. Monster - Traditional job board

Technical Details

  • Language: TypeScript
  • Runtime: Node.js
  • Web Scraping: Cheerio for HTML parsing, Axios for HTTP requests
  • Architecture: Modular scraper system with base class and site-specific implementations

Error Handling

The server includes comprehensive error handling:

  • Network timeouts and connection errors
  • HTML parsing errors
  • Rate limiting protection
  • Graceful degradation when individual sites fail

Legal and Ethical Considerations

This tool is for educational and personal use. Please respect:

  • Website terms of service
  • Rate limiting to avoid overloading servers
  • Robots.txt files and scraping policies
  • Consider using official APIs when available

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Add tests for new functionality
  4. Submit a pull request

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选