Joern MCP Server

Joern MCP Server

Enables AI assistants to perform sophisticated static code analysis using Joern's Code Property Graph technology. Supports multi-language analysis, security vulnerability detection, and code quality assessment through isolated Docker environments.

Category
访问服务器

README

🕷️ joern-mcp

A production-ready Model Context Protocol (MCP) server that provides AI assistants with static code analysis capabilities using Joern's Code Property Graph (CPG) technology.

Overview

The Joern MCP Server enables AI coding assistants to perform sophisticated static code analysis by leveraging Joern's powerful CPG-based analysis in isolated Docker environments. It implements the Model Context Protocol standard, making it compatible with various AI assistants and development environments.

Features

  • Static Code Analysis: Deep code analysis using Joern's CPG technology
  • Multi-Language Support: C/C++, Java, JavaScript/TypeScript, Python, Go, Kotlin, Scala, C#
  • Isolated Execution: All analysis runs in secure Docker containers
  • Intelligent Caching: Efficient CPG caching with configurable TTL
  • GitHub Integration: Direct analysis of GitHub repositories
  • Production Ready: Comprehensive error handling, logging, and monitoring
  • MCP Compliance: Full Model Context Protocol implementation

Quick Start

Prerequisites

  • Python 3.8+
  • Docker
  • Git

Installation

  1. Clone the repository:

    git clone https://github.com/Lekssays/joern-mcp.git
    cd joern-mcp
    
  2. Install dependencies:

    pip install -r requirements.txt
    
  3. Build Joern Docker image:

    # Option 1: Use the build script (recommended)
    ./build.sh
    
    # Option 2: Build manually
    docker build -t joern:latest .
    

Running the Server

Validate setup first:

python validate.py

Basic usage:

python main.py

With configuration file:

python main.py config.yml

Using environment variables:

export JOERN_DOCKER_IMAGE=joern:latest
export JOERN_CACHE_DIR=/tmp/joern_cache
export GITHUB_TOKEN=your_token_here
python main.py

Note: The joern:latest image is built locally using the included Dockerfile, not pulled from a registry.

Configuration

Create a config.yml file for custom configuration:

docker:
  image: "joern:latest"
  cpu_limit: "2"
  memory_limit: "4g"
  timeout: 300
  network_mode: "none"

cache:
  enabled: true
  max_size_gb: 10
  ttl_hours: 24
  directory: "/tmp/joern_cache"

max_concurrent_analyses: 3
github_token: "your_github_token"  # Optional, for private repos
log_level: "INFO"

Environment Variables

Variable Description Default
JOERN_DOCKER_IMAGE Joern Docker image joern:latest
JOERN_CPU_LIMIT CPU limit for containers 2
JOERN_MEMORY_LIMIT Memory limit for containers 4g
JOERN_TIMEOUT Container timeout (seconds) 300
JOERN_CACHE_ENABLED Enable CPG caching true
JOERN_CACHE_SIZE_GB Cache size limit (GB) 10
JOERN_CACHE_DIR Cache directory /tmp/joern_cache
GITHUB_TOKEN GitHub access token -
JOERN_LOG_LEVEL Logging level INFO

Usage with AI Assistants

VS Code with GitHub Copilot

Add to VS Code settings.json:

{
	"servers": {
		"joern-mcp": {
			"type": "stdio",
			"command": "python",
			"args": [
				"/path/to/joern-mcp/main.py"
			]
		}
	},
	"inputs": []
}

Claude Desktop

Configure in Claude Desktop settings:

{
  "mcp": {
    "servers": [{
      "name": "joern-mcp",
      "command": ["python", "main.py"],
      "workingDirectory": "/path/to/joern-mcp"
    }]
  }
}

Available Tools

Core Tools

  • load_project: Load code from GitHub URL or local path
  • generate_cpg: Generate Code Property Graph for analysis
  • run_query: Execute Joern queries against the CPG
  • list_projects: List all loaded projects
  • project_info: Get detailed project information
  • cleanup_project: Clean up project resources

Pre-built Queries

  • list_queries: Access security, quality, and metrics queries

Security Queries

  • SQL injection detection
  • XSS sink identification
  • Hardcoded secrets discovery
  • Unsafe deserialization patterns

Quality Queries

  • Complex methods detection
  • Long methods identification
  • Duplicate code analysis
  • Unused variables discovery

Metrics Queries

  • Total methods/classes/files count
  • Average cyclomatic complexity

Example Usage

Load and Analyze a Project

# Example MCP client interaction
{
  "tool": "load_project",
  "arguments": {
    "source": "https://github.com/user/repo",
    "branch": "main"
  }
}

{
  "tool": "generate_cpg",
  "arguments": {
    "project_id": "abc12345"
  }
}

{
  "tool": "run_query",
  "arguments": {
    "project_id": "abc12345",
    "query": "cpg.method.filter(_.cyclomaticComplexity > 10)"
  }
}

Common Queries

Find all functions:

cpg.method.l

Find function calls:

cpg.call.l

Security analysis:

cpg.call.name(".*exec.*").code

Complex methods:

cpg.method.filter(_.cyclomaticComplexity > 10)

Development

Project Structure

joern-mcp/
├── src/
│   ├── __init__.py
│   ├── server.py          # Main server implementation
│   ├── models.py          # Data models and exceptions
│   ├── utils.py           # Utility functions
│   └── config.py          # Configuration management
├── tests/
│   ├── conftest.py        # Test configuration
│   ├── test_server.py     # Server integration tests
│   ├── test_models.py     # Model unit tests
│   └── test_utils.py      # Utility function tests
├── examples/
│   └── sample.c           # Sample code for testing
├── main.py                # Entry point
├── test_client.py         # Simple test client
├── validate.py            # Setup validation script
├── requirements.txt       # Dependencies
├── Dockerfile             # Joern Docker image
├── build.sh              # Docker build script
└── README.md

Running Tests

Run all tests:

pytest

Run with coverage:

pytest --cov=src --cov-report=html

Run integration tests (requires Docker):

pytest -m integration

Run specific test file:

pytest tests/test_server.py

Code Quality

Format code:

black src/ tests/
isort src/ tests/

Lint code:

flake8 src/ tests/
mypy src/

Troubleshooting

Common Issues

Docker connection error:

  • Ensure Docker is running
  • Check Docker daemon accessibility
  • Verify user permissions for Docker socket

Image not found:

  • Build the Joern image: docker build -t joern:latest .
  • Check image name in configuration
  • Verify the build completed successfully: docker images | grep joern

Docker build issues:

  • Ensure Docker has sufficient disk space
  • Check internet connectivity for downloading Joern
  • Try building with more verbose output: docker build -t joern:latest . --progress=plain

Memory issues:

  • Increase Docker memory limit in config
  • Reduce concurrent analysis limit
  • Clear cache directory

Permission errors:

  • Check file/directory permissions
  • Ensure cache directory is writable
  • Verify Docker socket permissions

Logging

Enable debug logging for troubleshooting:

export JOERN_LOG_LEVEL=DEBUG
python main.py

Contributing

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature-name
  3. Make changes and add tests
  4. Run tests and linting: pytest && black . && flake8
  5. Commit changes: git commit -am 'Add feature'
  6. Push to branch: git push origin feature-name
  7. Submit a pull request

License

MIT License - see LICENSE file for details.

Acknowledgments

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选