JSON Skeleton MCP Server
Creates compact skeleton representations of large JSON files by preserving structure while truncating string values and deduplicating arrays, helping users understand JSON structure without processing the full data payload.
README
JSON Skeleton MCP Server
A lightweight MCP (Model Context Protocol) server that creates compact "skeleton" representations of large JSON files, helping you understand JSON structure without the full data payload.
Features
- Lightweight JSON Skeleton: Preserves structure with truncated string values
- Configurable String Length: Customize max string length (default: 200 chars)
- Type-Only Mode: Ultra-compact output showing only data types
- Smart Array Deduplication: Keeps only unique DTO structures in arrays
- Efficient Processing: Handles massive JSON files that exceed AI model context limits
Installation
Quick Start with uvx (Recommended)
You can run the MCP server directly without installation using uvx:
# Run from GitHub
uvx --from git+https://github.com/jskorlol/json-skeleton-mcp.git json-skeleton
# Run from local directory
uvx --from /path/to/json-skeleton-mcp json-skeleton
Traditional Installation
- Clone this repository:
git clone https://github.com/jskorlol/json-skeleton-mcp.git
cd json-skeleton-mcp
- Create a virtual environment and install:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -e .
Usage
As MCP Server in Claude Desktop
Add to your Claude Desktop configuration:
Using uvx (Recommended):
{
"mcpServers": {
"json-skeleton": {
"command": "uvx",
"args": ["--from", "git+https://github.com/jskorlol/json-skeleton-mcp.git", "json-skeleton"]
}
}
}
Using local installation:
{
"mcpServers": {
"json-skeleton": {
"command": "uvx",
"args": ["--from", "/path/to/json-skeleton-mcp", "json-skeleton"]
}
}
}
Available Tool
json_skeleton
Creates a lightweight skeleton of a JSON file with the following parameters:
file_path(required): Path to the JSON file to processmax_length(optional, default: 200): Maximum length for string valuestype_only(optional, default: false): Return only value types instead of values (most compact output)
Example 1: Basic Usage
Input: json_skeleton(file_path="/path/to/data.json")
Output: Truncated JSON with strings limited to 200 characters
Example 2: Custom String Length
Input: json_skeleton(file_path="/path/to/data.json", max_length=50)
Output: More aggressively truncated JSON with 50-char limit
Example 3: Type-Only Mode (Most Compact)
Input: json_skeleton(file_path="/path/to/data.json", type_only=true)
Output:
{
"name": "str",
"age": "int",
"active": "bool",
"balance": "float",
"notes": "null",
"items": [
{
"id": "int",
"label": "str"
}
]
}
Programmatic Usage
from json_skeleton import SkeletonGenerator
# Initialize generator
generator = SkeletonGenerator(max_value_length=200)
# Process a file
result = generator.process_file("large_data.json")
print(result['skeleton'])
# Process with custom length
result = generator.process_file("large_data.json", max_length=50)
print(result['skeleton'])
# Process in type-only mode
result = generator.process_file("large_data.json", type_only=True)
print(result['skeleton'])
# Or process data directly
data = {"key": "very long value" * 50, "items": [1, 2, 3, 1, 2, 3]}
skeleton = generator.create_skeleton(data)
print(skeleton)
How It Works
Array Deduplication
The tool intelligently deduplicates array items by comparing their DTO (Data Transfer Object) structure:
- For primitive arrays: Keeps up to 3 unique values
- For object arrays: Keeps one example of each unique structure
- Structure comparison is based on keys and value types, not actual values
- In type-only mode: Shows only the type of the first array element
Value Processing
- Normal Mode: Strings longer than max_length are truncated with "...(truncated)" suffix
- Type-Only Mode: All values replaced with their type names (str, int, float, bool, null)
- Numbers, booleans, and nulls are preserved as-is in normal mode
Use Cases
- Understanding API Responses: Quickly grasp the structure of large API responses without processing megabytes of data
- Documentation: Generate structure examples for API documentation
- Development: Work with data structure without handling large payloads
- Token Optimization: Reduce token usage when working with AI models
- Schema Discovery: Use type-only mode to understand data types in complex JSON structures
Testing
Run the test scripts to see the tool in action:
# Test basic functionality
python test_skeleton.py
# Test with different max_length values
python test_max_length.py
# Test type-only mode
python test_type_only.py
Requirements
- Python 3.10+
- MCP library
License
MIT License
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。