
JSON to Excel MCP by WTSolutions
The JSON to Excel MCP provides a standardized interface for converting (1)JSON data (2)URL pointing to JSON files into CSV format
README
JSON to Excel MCP by WTSolutions
Introduction
The JSON to Excel MCP (Model Context Protocol) provides a standardized interface for converting JSON data into CSV format string using the Model Context Protocol. This MCP implementation offers two specific tools for data conversion:
- json_to_excel_mcp_from_data: Converts JSON data string into CSV format.
- json_to_excel_mcp_from_url: Converts JSON file from a provided URL (.json format) into CSV format string.
JSON to Excel MCP is part of JSON to Excel toolkit by WTSolutions:
- JSON to Excel Web App: Convert JSON to Excel directly in Web Browser.
- JSON to Excel Excel Add-in: Convert JSON to Excel in Excel, works with Excel environment seamlessly.
- JSON to Excel API: Convert JSON to Excel by HTTPS POST request.
- <mark>JSON to Excel MCP Service: Convert JSON to Excel by AI Model MCP SSE/StreamableHTTP request.</mark> (<-- You are here.)
Server Config
Available MCP Servers (SSE and Streamable HTTP):
Using Stdio (NPX)
Server Config JSON:
{
"mcpServers": {
"json_to_excel": {
"args": [
"mcp-remote",
"https://mcp2.wtsolutions.cn/sse",
"--transport",
"sse-only"
],
"command": "npx"
}
}
}
Using SSE
Transport: SSE
URL: https://mcp2.wtsolutions.cn/sse
Server Config JSON:
{
"mcpServers": {
"json2excelsse": {
"type": "sse",
"url": "https://mcp2.wtsolutions.cn/sse"
}
}
}
Using Streamable HTTP
Transport: Streamable HTTP
URL: https://mcp2.wtsolutions.cn/mcp
Server Config JSON:
{
"mcpServers": {
"json2excelmcp": {
"type": "streamableHttp",
"url": "https://mcp2.wtsolutions.cn/mcp"
}
}
}
MCP Tools
json_to_excel_mcp_from_data
Converts JSON data string into CSV format string.
Parameters
Parameter | Type | Required | Description |
---|---|---|---|
data | string | Yes | JSON data string to be converted to CSV. Must be a valid JSON array or object. |
Note:
- Input data must be a valid JSON string. JSON schema available at JSON Schema and validator available at JSON to Excel Web App.
- If the JSON is an array of objects, each object will be treated as a row in the CSV.
- If the JSON is a single object, it will be converted into a CSV with key-value pairs.
- The CSV will include headers based on the keys in the JSON objects.
- This tool returns CSV-formatted data that can be easily converted/imported to Excel.
Example Prompt 1:
Convert the following JSON data into CSV format:
[
{"Name": "John Doe", "Age": 25, "IsStudent": false},
{"Name": "Jane Smith", "Age": 30, "IsStudent": true}
]
Example Prompt 2:
Convert the following JSON object into CSV format:
{
"Name": "John Doe",
"Age": 25,
"IsStudent": false,
"Courses": ["Math", "Science"]
}
json_to_excel_mcp_from_url
Converts JSON data from a provided URL into Excel data.
Parameters
Parameter | Type | Required | Description |
---|---|---|---|
url | string | Yes | URL pointing to a JSON file (.json) |
Note:
- The url should be publicly accessible.
- The JSON file should be in .json format.
- The JSON file should contain a valid JSON array or object. JSON schema available at JSON Schema and validator available at JSON to Excel Web App.
- If the JSON is an array of objects, each object will be treated as a row in the CSV.
- If the JSON is a single object, it will be converted into a CSV with key-value pairs.
- This tool returns CSV-formatted data that can be easily converted/imported to Excel.
Example Prompt 1
Convert JSON file to Excel, file URL: https://mcp.wtsolutions.cn/example.json
Example Prompt 2
(applicable only when you do not have a URL and working with online AI LLM)
I've just uploaded one .json file to you, please extract its URL and send it to MCP tool 'json_to_excel_mcp_from_url', for JSON to Excel conversion.
Response Format
The MCP tools return a JSON object with the following structure:
Field | Type | Description |
---|---|---|
isError | boolean | Indicates if there was an error processing the request |
msg | string | 'success' or error description |
data | string | Converted CSV data string, '' if there was an error. This CSV data can be easily imported into Excel. |
Example Success Response
{
"content": [{
"type": "text",
"text": "{\"isError\":false,\"msg\":\"success\",\"data\":\"Name,Age,IsStudent\nJohn Doe,25,false\nJane Smith,30,true\"}"
}]
}
Above is the response from MCP tool, and in most cases your LLM should interpret the response and present you with a JSON object, for example as below.
Note, different LLM models may have different ways to interpret the JSON object, so please check if the JSON object is correctly interpreted by your LLM model.
{
"isError": false,
"msg": "success",
"data": "Name,Age,IsStudent\nJohn Doe,25,false\nJane Smith,30,true"
}
Example Failed Response
{
"content": [{
"type": "text",
"text": "{\"isError\": true, \"msg\": \"Invalid JSON format\", \"data\": \"\"}"
}]
}
Above is the response from MCP tool, and in most cases your LLM should interpret the response and present you with a JSON object, for example as below.
Note, different LLM models may have different ways to interpret the JSON object, so please check if the response is correctly interpreted by your LLM model.
{
"isError": true,
"msg": "Invalid JSON format",
"data": ""
}
or it is also possible that your LLM would say "Invalid JSON format, please provide a valid JSON string" to you.
Data Type Handling
The API automatically handles different data types in JSON:
- Numbers: Converted to numeric values in CSV
- Booleans: Converted to 'true'/'false' strings
- Strings: Escaped and quoted if necessary
- Arrays: Converted to JSON.stringify array string
- Objects: Converted to JSON.stringify object string
Error Handling
The MCP returns descriptive error messages for common issues:
Invalid JSON format
: When input data is not a valid JSON stringEmpty JSON data
: When input data is an empty JSON stringNetwork Error when fetching file
: When there's an error downloading the file from the provided URLFile not found
: When the file at the provided URL cannot be foundServer Internal Error
: When an unexpected error occurs
Service Agreement and Privacy Policy
By using JSON to Excel MCP, you agree to the service agreement, and privacy policy.
Pricing
Free for now.
Donation
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。