Jsoncut MCP Server
Enables AI agents to generate JSON configurations for creating images and videos programmatically through the Jsoncut API, with support for layers, positioning, transitions, and validation.
README
[!WARNING] ⚠️ OUTDATED REPOSITORY - This repository is no longer maintained
A public MCP server is now available and this package is deprecated.
Please use the official public server instead: https://mcp.jsoncut.com/mcpFor more information, see: https://docs.jsoncut.com/docs/mcp/overview
<p align="center"> <img src="assets/logo.png" alt="Jsoncut Logo" width="200"/> </p>
<h1 align="center">Jsoncut MCP Server</h1>
<p align="center"> <strong>Model Context Protocol server for the Jsoncut API</strong><br> Enable AI agents to generate stunning images and videos programmatically </p>
<p align="center"> <a href="https://www.npmjs.com/package/@jsoncut/mcp-server"><img src="https://img.shields.io/npm/v/@jsoncut/mcp-server.svg" alt="npm version"></a> <a href="https://github.com/jsoncut/jsoncut-mcp-server/blob/main/LICENSE"><img src="https://img.shields.io/badge/license-MIT-blue.svg" alt="License"></a> </p>
🚀 Features
- 🎨 Image Generation: Create JSON configurations for image composition with layers, positioning, and effects
- 🎬 Video Generation: Create JSON configurations for video rendering with clips, transitions, and audio
- ✅ Configuration Validation: Validate configs against the Jsoncut API before submission
- 📋 Schema Resources: JSON schemas automatically available as MCP resources
- 🔑 Flexible Authentication: API key via environment variable or .env file
📦 Quick Start
Using npx (Recommended for Local)
export JSONCUT_API_KEY=your_api_key_here
npx -y @jsoncut/mcp-server
Using Remote Server (Recommended)
A public MCP server is available at https://mcp.jsoncut.com. No installation needed - just configure your MCP client with your API key:
{
"jsoncut": {
"url": "https://mcp.jsoncut.com/mcp",
"headers": {
"x-api-key": "your_jsoncut_api_key_here"
}
}
}
Using Docker Locally (Optional)
You can also run your own local server using Docker:
# Pull and run from Docker Hub
docker run -d \
--name jsoncut-mcp \
-p 3210:3000 \
centerbit/jsoncut-mcp-server:latest
# Access at: http://localhost:3210/mcp
Or use Docker Compose:
# Start the service
docker-compose up -d
# Access at: http://localhost:3210/mcp
📖 See DOCKER.md for complete Docker deployment guide
Get Your API Key
Get your Jsoncut API key at jsoncut.com
# Set as environment variable
export JSONCUT_API_KEY=your_api_key_here
# Or create .env file
cp .env.example .env
# Edit .env and add: JSONCUT_API_KEY=your_api_key_here
🎯 MCP Client Configuration
Remote Server (Recommended)
Use the public server at https://mcp.jsoncut.com:
Cursor IDE
Open Cursor Settings → Features → MCP Servers → "+ Add New MCP Server"
{
"jsoncut": {
"url": "https://mcp.jsoncut.com/mcp",
"headers": {
"X-API-Key": "your_jsoncut_api_key_here"
}
}
}
Claude Desktop
Add to your claude_desktop_config.json:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"jsoncut": {
"url": "https://mcp.jsoncut.com/mcp",
"headers": {
"X-API-Key": "your_jsoncut_api_key_here"
}
}
}
}
Local npx Mode
For local development without network access:
Cursor IDE
{
"jsoncut": {
"command": "npx",
"args": ["-y", "@jsoncut/mcp-server"],
"env": {
"JSONCUT_API_KEY": "your_api_key_here"
}
}
}
Claude Desktop
{
"mcpServers": {
"jsoncut": {
"command": "npx",
"args": ["-y", "@jsoncut/mcp-server"],
"env": {
"JSONCUT_API_KEY": "your_api_key_here"
}
}
}
}
Local Docker Server
If you're running your own local Docker server:
Cursor IDE
{
"jsoncut": {
"url": "http://localhost:3210/mcp",
"headers": {
"X-API-Key": "your_jsoncut_api_key_here"
}
}
}
Claude Desktop
{
"mcpServers": {
"jsoncut": {
"url": "http://localhost:3210/mcp",
"headers": {
"X-API-Key": "your_jsoncut_api_key_here"
}
}
}
}
📚 MCP Resources
The server automatically exposes JSON schemas as MCP resources:
schema://image- Complete image generation schemaschema://video- Complete video generation schema
AI agents can read these directly without tool calls for fast access to all configuration options.
🛠️ Available Tools
create_image_config
Create JSON configurations for image generation with a layer-based system.
Layer Types:
- image: Display images with fit modes (cover, contain, fill, inside, outside)
- text: Text with custom fonts, alignment, wrapping, and effects
- rectangle: Rectangular shapes with fill, stroke, and rounded corners
- circle: Circular and elliptical shapes
- gradient: Linear or radial color gradients
Positioning:
- Pixel coordinates:
{ x: 100, y: 50 } - Position strings:
center,top,bottom,top-left,top-right, etc. - Position objects:
{ x: 0.5, y: 0.5, originX: "center", originY: "center" }
Example:
{
"width": 1200,
"height": 630,
"layers": [
{
"type": "gradient",
"x": 0, "y": 0, "width": 1200, "height": 630,
"gradient": {
"type": "linear",
"colors": ["#667eea", "#764ba2"],
"direction": "diagonal"
}
},
{
"type": "text",
"text": "Welcome to Jsoncut",
"position": "center",
"fontSize": 64,
"color": "#ffffff"
}
]
}
create_video_config
Create JSON configurations for video generation with clips, layers, and transitions.
Key Features:
- Clips: Sequential video segments with individual layers
- Layer Types: video, image, title, subtitle, news-title, audio, gradients, and more
- Transitions: 75+ effects (fade, wipe, circle, cube, glitch, zoom, etc.)
- Audio: Background music, multiple tracks, normalization, and ducking
Example:
{
"width": 1920,
"height": 1080,
"fps": 30,
"defaults": {
"duration": 3,
"transition": { "name": "fade", "duration": 1 }
},
"clips": [
{
"layers": [
{ "type": "title", "text": "Welcome", "position": "center" }
]
}
]
}
validate_config
Validate configurations against the Jsoncut API before submission.
Parameters:
type: "image" or "video"config: Configuration object to validateapiKey: Optional API key (uses environment if not provided)
Returns:
- Validation status
- Estimated token cost
- Error details (if any)
- Detected resources with sizes
get_image_schema / get_video_schema
Get complete JSON schemas for image or video generation.
Note: Schemas are also available as MCP resources (schema://image and schema://video) which AI agents can access directly without tool calls.
📖 Workflow
- Create Configuration: Use
create_image_configorcreate_video_config - Validate (optional): Call
validate_configif you have actual file paths - Submit: Use the configuration with the Jsoncut API
The schemas are automatically available as MCP resources, so AI agents have instant access to all configuration options.
📁 File Paths
Use placeholder paths in configurations:
/image/2024-01-15/userXXX/photo.jpg
/video/2024-01-15/userXXX/video.mp4
/audio/2024-01-15/userXXX/music.mp3
/font/2024-01-15/userXXX/CustomFont.ttf
Supported formats:
- Images: png, jpg, jpeg, gif, webp
- Videos: mp4, mov, avi, webm
- Audio: mp3, wav, m4a, aac
- Fonts: ttf, otf, woff, woff2
🧪 Testing
Use the MCP Inspector for interactive testing:
export JSONCUT_API_KEY=your_api_key_here
npm run inspector
🔧 Development
Local Development
# Clone and install
git clone https://github.com/jsoncut/jsoncut-mcp-server.git
cd jsoncut-mcp-server
npm install
# Build
npm run build
# Watch mode
npm run watch
# Run locally
node dist/index.js
Configuration with Local Build
For Cursor/Claude Desktop, use the local build:
{
"jsoncut": {
"command": "node",
"args": ["/absolute/path/to/jsoncut-mcp-server/dist/index.js"],
"env": {
"JSONCUT_API_KEY": "your_api_key_here"
}
}
}
📝 Examples
See the examples/ directory for complete configurations:
image-example.json- Image generation with multiple layer typesvideo-example.json- Video generation with clips and transitions
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
📄 License
MIT License - see LICENSE file for details.
🔗 Links
- API Documentation: docs.jsoncut.com
- Website: jsoncut.com
- GitHub: github.com/jsoncut/jsoncut-mcp-server
- npm: @jsoncut/mcp-server
- Support: support@jsoncut.com
<p align="center"> Built with the <a href="https://github.com/modelcontextprotocol">Model Context Protocol SDK</a> by Anthropic </p>
<p align="center"> Made with ❤️ by the Jsoncut Team </p>
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。