JumpCloud MCP Server

JumpCloud MCP Server

Enables natural language interaction with JumpCloud environments to query users, systems, groups, and SSO applications. Features a local LLM-free agent for keyword-based tool matching and REST API access to JumpCloud data.

Category
访问服务器

README

🤖 JumpCloud MCP Server

A natural language API server and agent for your JumpCloud environment, built with FastAPI. Supports the Model Context Protocol (MCP) for integration with AI assistants and code editors.

This MCP server lets you:

  • 🔎 Query users, systems, groups, and SSO apps via REST
  • 💬 Ask natural language questions via /ask
  • 🤖 Use a local, LLM-free agent (keyword-based tool matcher)
  • 🐳 Run everything in Docker
  • ⚙️ Integrate with MCP-compatible clients (Claude Desktop, Cursor, etc.)

📦 Features

  • ✅ FastAPI-based REST API for JumpCloud data
  • 🔐 Token authentication using x-api-key
  • 🤖 /ask endpoint for semantic/natural language queries
  • 🐳 Docker Support
  • 💡 MCP protocol support for AI assistants and code editors

🛠️ Quick Setup

1. Clone and configure environment

git clone https://gitlab.com/barkada/itops/jumpcloud-mcp
cd jumpcloud-mcp
cp .env.example .env

Update .env with your keys:

JUMPCLOUD_API_KEY=your_jumpcloud_api_key
MCP_API_URL=http://localhost:8000

2. Build and run with Docker

docker-compose up --build

The server will start on http://localhost:8000.


3. Call MCP via REST

curl -X GET http://localhost:8000/systems   -H "x-api-key: $JUMPCLOUD_API_KEY"

4. Ask with natural language

curl -X POST http://localhost:8000/ask   -H "Content-Type: application/json"   -H "x-api-key: $JUMPCLOUD_API_KEY"   -d '{"prompt": "List all active Mac systems"}'

📁 Directory Structure

jumpcloud_mcp/
├── main.py                  # FastAPI app + MCP protocol + /ask endpoint
├── jumpcloud/
│   ├── client.py            # JumpCloud API calls: users, systems, groups
│   ├── models.py            # Pydantic models for validation
│   ├── mcp_agent_runner.py  # Keyword-based tool-matching agent (no LLM)
│   └── auth.py              # API key auth
├── .env                     # Secrets/config
├── Dockerfile               # Build FastAPI server container
├── docker-compose.yml       # Docker Compose for dev/prod
├── requirements.txt         # Python dependencies (NO openai/anthropic)
└── README.md                # Docs and usage guide

🔧 REST API Reference - API Docs

📍 GET Endpoints

  • /users
  • /systems
  • /user-groups
  • /system-groups
  • /sso-applications

📍 POST

  • /ask — Accepts {"prompt": "..."}
  • /users/search Search JumpCloud users using filters and fields.
    • {"filter": [{"department": "IT"}], "fields": "email username sudo"}
  • /commands/search Search JumpCloud commands using filters and fields.
    • {"filter": [{"command": "restart"}], "fields": "name command sudo"}

💡 MCP Client Integration

This server supports the Model Context Protocol (MCP) and can be used with various AI assistants and code editors.

Claude Desktop

Add to your Claude Desktop configuration (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):

{
  "mcpServers": {
    "jumpcloud-mcp": {
      "command": "uvicorn",
      "args": ["main:app", "--host", "0.0.0.0", "--port", "8000"],
      "cwd": "/path/to/jumpcloud_mcp"
    }
  }
}

Cursor IDE

Create .cursor/mcp.json in your workspace:

{
  "mcpServers": {
    "jumpcloud-mcp": {
      "url": "http://localhost:8000",
      "description": "JumpCloud MCP Server"
    }
  }
}

Other MCP Clients

For any MCP-compatible client, configure it to connect to:

  • HTTP URL: http://localhost:8000
  • Protocol: MCP over HTTP
  • Authentication: Include x-api-key header with your JumpCloud API key

✨ Support

This project is maintained for local/private JumpCloud automation and is ideal for secure deployments, development, and custom integrations with MCP-compatible AI assistants and code editors.


推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选