Jupiter Broadcasting Podcast Data MCP Server
Enables access to Jupiter Broadcasting podcast episodes through RSS feed parsing. Supports searching episodes by date, hosts, or content, retrieving detailed episode information, and fetching transcripts when available.
README
Jupiter Broadcasting Podcast Data MCP Server
A FastMCP server that parses Podcast 2.0 RSS feeds from Jupiter Broadcasting shows and provides access to episode data through MCP tools.
Features
This MCP server provides four main tools:
- List Shows - Returns a list of available podcast shows
- Search Episodes - Search episodes by show, date range, hosts, or text content
- Get Episode - Retrieve detailed information about a specific episode
- Get Transcript - Fetch episode transcripts when available
Installation
This project uses the uv package manager for Python dependency management.
Prerequisites
- Python 3.10 or higher
- uv package manager
Install uv (if not already installed)
curl -LsSf https://astral.sh/uv/install.sh | sh
Clone and Setup
git clone <repository-url>
cd jupiterbroadcasting_mcp
uv sync
Usage
Running the Server
To start the MCP server:
uv run jupiterbroadcasting-mcp
Or alternatively:
uv run python -m jupiterbroadcasting_mcp.server
MCP Tools
1. List Shows
Returns an array of available podcast show names.
{
"tool": "list_shows",
"arguments": {}
}
Returns: Array of show names (e.g., ["Linux Unplugged", "This Week in Bitcoin", ...])
2. Search Episodes
Search for episodes using various criteria. At least one parameter must be provided.
{
"tool": "search_episodes",
"arguments": {
"show_name": "Linux Unplugged",
"since_date": "2024-01-01",
"before_date": "2024-12-31",
"hosts": ["Chris Fisher", "Wes Payne"],
"text_search": "kubernetes"
}
}
Parameters:
show_name(optional): Filter by specific showsince_date(optional): Episodes published on or after this date (YYYY-MM-DD or ISO format)before_date(optional): Episodes published before this date (YYYY-MM-DD or ISO format)hosts(optional): Array of host names to filter bytext_search(optional): Search text in episode titles and descriptions
Returns: Array of episode objects with metadata
3. Get Episode
Retrieve detailed information about a specific episode.
{
"tool": "get_episode",
"arguments": {
"show_name": "Linux Unplugged",
"episode_number": "635"
}
}
Parameters:
show_name(required): Name of the showepisode_number(required): Episode number
Returns: Episode object with full metadata including:
- Title and description
- Publication date
- Host information
- Audio file URLs
- Transcript URL (if available)
- Duration
- Hosts
4. Get Transcript
Fetch the transcript content for an episode.
{
"tool": "get_transcript",
"arguments": {
"show_name": "Linux Unplugged",
"episode_number": "635"
}
}
Parameters:
show_name(required): Name of the showepisode_number(required): Episode number
Returns: Object containing transcript text or error message
Configuration
Adding New Feeds
To add or modify RSS feeds, edit the JB_FEEDS dictionary in jupiterbroadcasting_mcp/server.py:
JB_FEEDS = {
"Show Name": "https://example.com/feed.rss",
"Another Show": "https://example.com/another-feed.rss",
}
Podcast 2.0 Namespace Support
This server supports Podcast 2.0 namespace elements including:
<podcast:person>for host information<podcast:transcript>for transcript URLs- Standard RSS elements for titles, descriptions, and enclosures
Development
Setting up Development Environment
# Install with development dependencies
uv sync --group dev
# Run tests
uv run pytest
# Format code
uv run black .
uv run isort .
# Type checking
uv run mypy .
Project Structure
jupiterbroadcasting_mcp/
├── jupiterbroadcasting_mcp/
│ ├── __init__.py
│ ├── server.py # Main MCP server
│ └── rss_parser.py # RSS feed parsing logic
├── tests/ # Test files
├── pyproject.toml # Project configuration
└── README.md
Error Handling
The server includes comprehensive error handling:
- Invalid search parameters return error messages
- Network failures when fetching feeds are logged
- Missing episodes or transcripts return appropriate error responses
- Malformed RSS feeds are handled gracefully
Dependencies
- fastmcp: FastMCP framework for building MCP servers
- lxml: High-performance XML parsing with full Podcast 2.0 namespace support
- requests: HTTP client for fetching feeds and transcripts
License
MIT License - see LICENSE file for details.
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests for new functionality
- Run the test suite and linting
- Submit a pull request
Support
For issues and questions, please open an issue on the GitHub repository.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。