K8s MCP
Enables interaction with Kubernetes clusters through 32 specialized tools for managing resources, deployments, and services. Provides both CLI and web interfaces for real-time Kubernetes operations powered by Google Gemini.
README
K8s MCP
A Kubernetes assistant powered by Model Context Protocol (MCP) and Google Gemini.
Requirements
- Python 3.10+
- Kubernetes cluster with kubeconfig configured
- Node.js 18+ (for frontend)
- Bun (optional, for faster frontend builds)
Quick Start
Use the Makefile to run different components:
1. MCP Server
Starts the MCP server that communicates with your Kubernetes cluster.
make mcp-server
Requires: Active Kubernetes cluster and configured kubeconfig.
2. CLI Mode
Interactive command-line interface to query your Kubernetes cluster.
make cli
3. Web Application (Backend + Frontend)
Start the backend API server:
make backend
Start the frontend in another terminal:
make frontend
Then open http://localhost:5173 in your browser.
4. All at Once
Start all services in background (development mode):
make dev
Project Structure
k8s_mcp_server.py - MCP server implementation
mcp_client.py - CLI client
app/
backend/ - FastAPI server
frontend/ - React UI
Configuration
Ensure your kubeconfig is at ~/.kube/config or set the KUBECONFIG environment variable.
The MCP server exposes 32 Kubernetes tools for managing resources, deployments, services, and more.
Features
- Real-time Kubernetes operations via MCP tools
- Chat interface with tool call results
- Inline tool call display in messages
- WebSocket streaming for live responses
- Automatic WebSocket reconnection
Make Commands
Available make targets (run make <target>):
make help— Show all available commandsmake mcp-server— Start the K8s MCP servermake cli— Launch the interactive CLI clientmake backend— Start the FastAPI backendmake frontend— Start the React frontendmake dev— Start backend and frontend in the background (development mode)make logs— Tail service logsmake stop— Stop all background servicesmake install-deps— Install project dependenciesmake clean— Remove build artifacts and cache files
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。
mcp-server-qdrant
这个仓库展示了如何为向量搜索引擎 Qdrant 创建一个 MCP (Managed Control Plane) 服务器的示例。