Kafka MCP Server

Kafka MCP Server

Enables AI agents to interact with Apache Kafka through natural language, supporting operations like producing/consuming messages, managing topics, and querying brokers, partitions, and consumer group offsets.

Category
访问服务器

README

Kafka MCP

Overview

The Kafka MCP Server offers efficient way to convert prompts into actions into Kafka ecosystem. It is a natural language interface designed for agentic applications to efficiently manage Kafka operations and integrate seamlessly with MCP Clients enabling AI driven workflows to interact with processes in Kafka. Using this MCP Server, you can ask questions like:

  1. Publish message 'i am using kafka server' on the topic 'test-kafka'
  2. Consume the message from topic 'test-kafka'
  3. List all topics from the kafka environment

Features

  • Natural Language Queries: Enables AI agents to query and update Redis using natural language.
  • Seamless MCP Integration: Works with any MCP client for smooth communication.
  • Full Kafka Support: Handles producer, consumer, topics, broker, partitions and offsets.
  • Scalable & Lightweight: Designed for high-performance data operations.

Tools

This MCP Server offers various tools for Kafka:

consumer and producer tools allow to consumer and publish message on topics

topic tools allow to list, create, delete and describe topics in Kafka.

broker allows to get broker info.

partition tools allow to get partitions and partition offsets.

group_offset tools allow to get and reset offsets in Kafka.

Configurations

set the following in .env file or export manually

BOOTSTRAP_SERVERS=your_kafka_server
MCP_TRANSPORT=stdio

Local Development

Create a virtual environment

# Using venv (built-in)
python3 -m venv .venv

# Activate the virtual environment
# On Windows
.venv\Scripts\activate

# On macOS/Linux
source .venv/bin/activate

Install Dependencies

# Using pip
pip install -r requirements.txt

# Or using uv (faster)
uv pip install -r requirements.txt

Set Configurations in terminal/env

BOOTSTRAP_SERVERS=<your_kafka_url>
MCP_TRANSPORT=stdio

Run the application

python3 src/main.py

# OR

uv run python3 src/main.py

To interact with server,

Add the following configuration to your MCPO server's config.json file (e.g., in Claude Desktop):

{
  "mcpServers": {
    "kafka-mcp": {
      "command": "python3",
      "args": ["/Users/I528600/Desktop/mcp/kafka-mcp/src/main.py"],
      "env": {
        "BOOTSTRAP_SERVERS": "localhost:9092",
        "MCP_TRANSPORT": "stdio"
      }
    }
  }
}

Example prompts

  • List all topics in the kafka cluster
  • Create topic 'my-kafka' in kafka cluster
  • Publish a message 'hello from mcp' to the topic 'my-kafka' in cluster
  • Consume 2 messages from the topic 'my-kafka' in kafka cluster
  • Describe the topic 'my-kafka'

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选