Kappybara MCP Server
Enables LLMs to run rule-based molecular interaction simulations using the Kappa language through the Kappybara package. Returns simulation results as CSV data for analysis of biochemical systems and molecular binding dynamics.
README
Kappybara MCP Server
An MCP (Model Context Protocol) server for running Kappa simulations using the Kappybara package. This allows LLMs to run rule-based simulations of molecular interaction systems directly.
Python packages used:
Features
- Run Kappa Simulations: Execute Kappa models with customizable parameters using kappybara
- CSV Output: Get simulation results as CSV data for easy analysis
- Example Models: Built-in example models (reversible binding, linear polymerization)
- Pure Python: Uses the kappybara Python library for all simulations
Installation
- Clone or download this repository
- Install dependencies:
pip install -r requirements.txt
Usage
Running the MCP Server
fastmcp run main.py
Using with Claude Desktop
fastmcp install claude-desktop main.py
Available Tools
run_kappa_simulation
Run a Kappa simulation and return results with stdout, stderr, and CSV output.
Parameters:
kappa_code(string, required): The Kappa model code to simulatetime_limit(float, default: 100.0): Maximum simulation timepoints(int, default: 200): Number of data points to collectseed(int, optional): Random seed for reproducibility
Returns: JSON string with three fields:
stdout: Standard output from the simulationstderr: Standard error output (warnings, errors)output: CSV data with simulation results
Example:
kappa_code = """
%init: 100 A(x[.])
%init: 100 B(x[.])
%obs: 'AB' |A(x[1]), B(x[1])|
A(x[.]), B(x[.]) <-> A(x[1]), B(x[1]) @ 1, 1
"""
result = run_kappa_simulation(kappa_code, time_limit=50, points=100)
# Result is a JSON string like:
# {
# "stdout": "",
# "stderr": "",
# "output": "time,AB\n0.0,0\n0.01,1\n..."
# }
Available Resources
kappa://examples/simple
A simple reversible binding model (kappybara syntax).
kappa://examples/polymerization
A linear polymerization model (kappybara syntax).
Kappa Language Basics (Kappybara Syntax)
Kappybara uses a specific syntax for Kappa models. Here's a quick reference:
Basic Syntax
%init: 100 AgentName(site1[.], site2[state]) # Initialize agents
%obs: 'Observable' |pattern| # Define observable
pattern -> pattern @ rate # Define rule (irreversible)
pattern <-> pattern @ rate1, rate2 # Define rule (reversible)
Binding Sites
[.]- unbound site[1],[2], etc. - bound sites (bond labels)[_]- wildcard for any binding state
Example: Reversible Binding
%init: 100 A(x[.])
%init: 100 B(x[.])
%obs: 'A_free' |A(x[.])|
%obs: 'B_free' |B(x[.])|
%obs: 'AB_complex' |A(x[1]), B(x[1])|
// Reversible binding with forward rate 0.001 and reverse rate 0.1
A(x[.]), B(x[.]) <-> A(x[1]), B(x[1]) @ 0.001, 0.1
Development
Project Structure
kappybara-mcp/
├── main.py # MCP server implementation
├── requirements.txt # Python dependencies
├── README.md # This file
└── test_example.py # Example test/demo script
Testing
Run the test example:
python test_example.py
How It Works
- The MCP server exposes Kappa simulation capabilities through the Model Context Protocol
- LLMs can call the
run_kappa_simulationtool with Kappa code (using kappybara syntax) and parameters - The server uses the Kappybara Python library to parse the model and run the simulation
- Results are returned as JSON with stdout, stderr, and CSV output that can be analyzed or visualized
References
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。