Karenina MCP

Karenina MCP

Enables natural language querying of Karenina benchmark verification results stored in SQLite databases, allowing AI assistants to explore and analyze model performance data without writing SQL manually.

Category
访问服务器

README

karenina-mcp

Experimental - This is an experimental MCP server for inspecting Karenina verification results through natural language queries.

Overview

karenina-mcp provides an MCP (Model Context Protocol) interface that allows AI assistants like Claude to explore and analyze verification results stored in a Karenina SQLite database. Instead of writing SQL queries manually, you can ask questions in natural language and the assistant will translate them into appropriate queries.

How It Works

The server uses a hierarchical context exposition approach to help the assistant understand your database efficiently:

Step 1: Configure the Database

First, call configure_database with the path to your SQLite results database. This connects the server and returns a list of available tables and views.

Step 2: Query with Natural Language

Once configured, the agent uses hierarchical schema discovery to answer your questions:

  1. Schema Awareness - View summaries are embedded in the get_schema tool description, so the agent sees all available views without any tool call
  2. Selective Deep-Dive - The agent calls get_schema([view_names]) only for views relevant to your question
  3. Query Generation - With precise schema knowledge, it generates accurate SQL queries
  4. Results Interpretation - Results are returned as formatted markdown tables

This approach minimizes context usage while ensuring the assistant has the precise information needed to answer your questions accurately.

┌─────────────────────────────────────────────────────────────────┐
│               configure_database(db_path)                        │
│   Points the server to the SQLite results database               │
│   → Returns list of available tables and views                   │
└─────────────────────────────────────────────────────────────────┘
                                │
                    (database now connected)
                                │
                                ▼
┌─────────────────────────────────────────────────────────────────┐
│                     User Question                                │
│            "Which model performed best on biology questions?"    │
└─────────────────────────────────────────────────────────────────┘
                                │
                                ▼
┌─────────────────────────────────────────────────────────────────┐
│          Agent reads tool descriptions (no call needed)          │
│   get_schema description contains one-line view summaries        │
│   → Agent identifies relevant views for the question             │
└─────────────────────────────────────────────────────────────────┘
                                │
                                ▼
┌─────────────────────────────────────────────────────────────────┐
│           get_schema(["template_results", ...])                  │
│   Returns full column docs, types, keys, joins, examples         │
│   → Agent now knows exact column names and relationships         │
└─────────────────────────────────────────────────────────────────┘
                                │
                                ▼
┌─────────────────────────────────────────────────────────────────┐
│                        query(sql)                                │
│   Agent generates precise SQL with correct column names          │
│   → Returns formatted markdown table with results                │
└─────────────────────────────────────────────────────────────────┘

Installation

cd karenina-mcp
uv sync

Usage

Run the server (STDIO mode)

uv run karenina-mcp
# or
uv run fastmcp run src/karenina_mcp/server.py

Run as HTTP server

Start the MCP server as an HTTP server for remote or web-based access:

uv run fastmcp run src/karenina_mcp/server.py --transport http --port 8000

The server will be available at http://localhost:8000. You can also specify a custom host:

uv run fastmcp run src/karenina_mcp/server.py --transport http --host 0.0.0.0 --port 8000

Configure in Claude Code

Add to your Claude Code settings (.claude/settings.local.json or global settings):

{
  "mcpServers": {
    "karenina": {
      "command": "uv",
      "args": ["--directory", "/path/to/karenina-mcp", "run", "karenina-mcp"]
    }
  }
}

Replace /path/to/karenina-mcp with the absolute path to the karenina-mcp directory.

Configure in Claude Desktop

Add to your Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json):

{
  "mcpServers": {
    "karenina": {
      "command": "uv",
      "args": ["--directory", "/path/to/karenina-mcp", "run", "karenina-mcp"]
    }
  }
}

Tools

configure_database

Initialize the server with your results database.

configure_database(db_path="/path/to/karenina.db")

Returns confirmation with list of available tables and views.

get_schema

Get detailed schema documentation for specific views. The tool description itself contains one-line summaries of all available views, so the agent can identify relevant views without calling the tool.

get_schema(view_names=["template_results", "question_attributes"])

Returns full column documentation, types, primary/foreign keys, join information, and example queries for the requested views.

Example Questions

Once the database is configured, you can ask questions like:

  • "What's the overall pass rate across all models?"
  • "Show me the questions where "mcp-local" was correct but "mcp-remote" failed;
  • "Compute pass rates by question keywords and sort them in increasing performance"
  • Show me results to question from the last run where more than one but not all of the replicates failed;

Related Projects

  • Karenina - Core benchmarking framework

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选