
Karma MCP Server
Enables Claude to interact with Karma Alert dashboard to monitor and analyze Kubernetes alerts. Provides tools to check alert status, filter by cluster/severity, get detailed alert information, and analyze alert statistics and trends.
README
Karma MCP Server
Simple MCP server for integrating Claude with Karma Alert dashboard.
Quick Start
1. Install dependencies
uv pip install -e .
2. Configure environment
cp .env.example .env
# Edit .env and set KARMA_URL to your Karma instance
3. Test with your Karma instance
# Port forward to your Karma instance (if in Kubernetes)
kubectl port-forward svc/karma 8080:80 -n monitoring
# Set environment variable
export KARMA_URL=http://localhost:8080
# Test the MCP tools (optional)
uv run python tests/manual/test_mcp_tools.py
# Run the server
cd src && python -m karma_mcp.server
4. Using Docker (Alternative)
# Build the Docker image
./docker/build.sh
# Run with Docker
KARMA_URL=http://your-karma-url:8080 ./docker/run.sh
# Or use docker-compose
cp .env.docker .env
# Edit .env with your settings
docker-compose up -d
5. Configure in Claude Desktop
Add to your Claude Desktop configuration (~/Library/Application Support/Claude/claude_desktop_config.json
):
{
"mcpServers": {
"karma": {
"command": "python",
"args": ["-m", "karma_mcp.server"],
"env": {
"KARMA_URL": "http://localhost:8080"
}
}
}
}
Available Tools
check_karma
: Check connection to Karma serverlist_alerts
: List all active alerts with basic infoget_alerts_summary
: Get statistical summary of alerts by severity and stateget_alert_details
: Get detailed information about a specific alert by namelist_clusters
: List all available Kubernetes clusters with alert countslist_alerts_by_cluster
: Filter alerts by specific cluster name
How it works
This MCP server connects to your Karma Alert dashboard API and provides tools for Claude to:
- Check if Karma is accessible
- Retrieve and display active alerts
- Filter alerts by cluster, severity, namespace, and state
- Get detailed information about specific alerts
- Analyze alert statistics and trends
The server uses the Karma JSON API endpoints to fetch alert data.
Testing
Manual testing scripts are available in tests/manual/
:
# Test all MCP tools
uv run python tests/manual/test_mcp_tools.py
# Test cluster filtering
uv run python tests/manual/test_cluster_features.py
# Debug API responses
uv run python tests/manual/debug_data.py
See tests/manual/README.md
for complete testing documentation.
Contributing
Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.
Development Setup
# Clone the repository
git clone <repository-url>
cd karma-mcp
# Install dependencies
uv pip install -e .
# Set up pre-commit hooks (optional)
# pip install pre-commit
# pre-commit install
Running Tests
# Run manual tests
uv run python tests/manual/test_mcp_tools.py
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
- Karma Alert Dashboard by prymitive
- Model Context Protocol by Anthropic
- FastMCP for simplified MCP server development
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。