KDB MCP Service
Enables AI agents to interact with KDB+ databases through standardized MCP tools, supporting full CRUD operations, schema introspection, and multi-database connections with connection pooling for efficient time-series and financial data management.
README
KDB MCP Service
A Model Context Protocol (MCP) service for interacting with KDB+ databases. This service allows AI agents to query, insert, update, and delete data from KDB+ databases through a standardized MCP interface.
Features
- Multiple Database Support: Connect to multiple KDB+ databases simultaneously
- Connection Pooling: Efficient connection management with configurable pool sizes
- Full CRUD Operations: Query, insert, update, and delete data
- Schema Introspection: List tables and get schema information
- Environment Variable Support: Secure credential management via environment variables
- Async Operations: Non-blocking database operations for better performance
Installation
- Clone the repository:
git clone <repository-url>
cd kdb-mcp
- Install dependencies:
pip install -r requirements.txt
- Configure your databases (see Configuration section)
Configuration
Environment Variables
Copy .env.example to .env and fill in your database credentials:
cp .env.example .env
Edit .env with your actual database details:
KDB_PROD_HOST=your-prod-host.com
KDB_PROD_PORT=5000
KDB_PROD_USERNAME=your-username
KDB_PROD_PASSWORD=your-password
Configuration File
The service uses a YAML configuration file located at config/kdb_config.yaml. You can customize:
- Database connections
- Connection pool sizes
- Logging settings
- Server configuration
Example configuration:
databases:
production:
host: ${KDB_PROD_HOST:localhost}
port: ${KDB_PROD_PORT:5000}
username: ${KDB_PROD_USERNAME:}
password: ${KDB_PROD_PASSWORD:}
pool_size: 10
description: Production KDB+ database
Usage
Running the Server
Start the MCP server:
python main.py
Or with a custom config file:
python main.py /path/to/custom/config.yaml
Available MCP Tools
The service provides the following MCP tools:
1. kdb_query
Execute any Q query on a KDB+ database.
{
"database": "production",
"query": "select from trades where date=.z.d"
}
2. kdb_list_tables
List all tables in a database.
{
"database": "production"
}
3. kdb_get_schema
Get schema information for a specific table.
{
"database": "production",
"table": "trades"
}
4. kdb_select
Execute a SELECT query with optional filtering.
{
"database": "production",
"table": "trades",
"columns": ["symbol", "price", "volume"],
"where": "symbol=`AAPL",
"limit": 100
}
5. kdb_insert
Insert data into a table.
{
"database": "production",
"table": "trades",
"data": {
"symbol": "AAPL",
"price": 150.25,
"volume": 1000
}
}
6. kdb_update
Update existing records in a table.
{
"database": "production",
"table": "trades",
"updates": {
"price": 151.00
},
"where": "symbol=`AAPL"
}
7. kdb_delete
Delete records from a table.
{
"database": "production",
"table": "trades",
"where": "date<.z.d-30"
}
8. kdb_list_databases
List all configured databases.
{}
Integration with AI Agents
This MCP service can be integrated with any AI agent that supports the Model Context Protocol. The agent can use the provided tools to:
- Query real-time market data
- Analyze historical trading patterns
- Update trading strategies
- Manage data pipelines
- Generate reports from KDB+ data
Example Agent Workflow
# Agent pseudocode
async def analyze_trading_data():
# List available databases
databases = await call_tool("kdb_list_databases", {})
# Get today's trades
trades = await call_tool("kdb_select", {
"database": "production",
"table": "trades",
"where": "date=.z.d",
"limit": 1000
})
# Analyze and generate insights
insights = analyze(trades)
# Store insights back to KDB+
await call_tool("kdb_insert", {
"database": "analytics",
"table": "insights",
"data": insights
})
Project Structure
kdb-mcp/
├── src/
│ └── kdb_mcp/
│ ├── __init__.py # Package initialization
│ ├── kdb_connection.py # KDB+ connection handling
│ ├── mcp_server.py # MCP server implementation
│ └── config.py # Configuration management
├── config/
│ └── kdb_config.yaml # Database configuration
├── main.py # Entry point
├── requirements.txt # Python dependencies
├── .env.example # Environment variables template
└── README.md # This file
Security Considerations
- Never commit
.envfiles with actual credentials - Use environment variables for sensitive information
- Implement proper authentication for production deployments
- Consider using SSL/TLS for database connections
- Regularly rotate database credentials
- Limit database permissions to minimum required
Troubleshooting
Connection Issues
- Verify KDB+ server is running and accessible
- Check firewall rules for the KDB+ port
- Ensure credentials are correct
- Test connectivity with
telnet host port
Query Errors
- Verify Q syntax is correct
- Check table and column names exist
- Ensure proper data types are used
- Review KDB+ server logs for detailed errors
Contributing
Contributions are welcome! Please:
- Fork the repository
- Create a feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
License
[Your License Here]
Support
For issues and questions, please create an issue in the repository or contact your system administrator.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。