KevoDB MCP Server
Implements a Multimodal Communication Protocol server for KevoDB, allowing AI agents to interact with the key-value database through a standardized API with support for core operations like get/put, scans, transactions, and batch operations.
README
KevoDB MCP Server
This project implements a MCP (Multimodal Communication Protocol) server for KevoDB, allowing AI agents to interact with KevoDB using a standardized API.
Features
- Exposes KevoDB operations through MCP tools
- Supports all core KevoDB functionality:
- Basic key-value operations (get, put, delete)
- Range, prefix, and suffix scans
- Transactions
- Batch operations
- Database statistics
- Simple string-based API with UTF-8 encoding
Prerequisites
- Python 3.8+
- Running KevoDB server (default: localhost:50051)
- FastMCP library
- Python-Kevo SDK
Installation
- Install dependencies:
pip install fastmcp python-kevo
- Ensure KevoDB is running on localhost:50051 (or set the
KEVO_HOSTandKEVO_PORTenvironment variables to connect to a different endpoint)
Usage
Running the MCP Server
Start the MCP server:
python main.py
This will launch the MCP server on http://localhost:9000/mcp
You can configure the KevoDB connection using environment variables:
KEVO_HOST: Hostname of the KevoDB server (default: "localhost")KEVO_PORT: Port of the KevoDB server (default: "50051")
Example:
KEVO_HOST=192.168.1.100 KEVO_PORT=5000 python main.py
Using with AI Agents
AI agents that support MCP can connect to this server and use all exposed tools. The server provides the following tools:
| Tool | Description |
|---|---|
connect |
Connect to the KevoDB server |
get |
Get a value by key from KevoDB |
put |
Store a key-value pair in KevoDB |
delete |
Delete a key-value pair from KevoDB |
scan |
Scan keys in KevoDB with options |
batch_write |
Perform multiple operations in a batch |
get_stats |
Get database statistics |
begin_transaction |
Begin a new transaction and return transaction ID |
commit_transaction |
Commit a transaction by ID |
rollback_transaction |
Roll back a transaction by ID |
tx_put |
Store a key-value pair within a transaction |
tx_get |
Get a value by key within a transaction |
tx_delete |
Delete a key-value pair within a transaction |
cleanup |
Close the KevoDB connection |
Integration with AI Applications
To use KevoDB with your AI application:
- Start the KevoDB server
- Start this MCP server
- Configure your AI agent to connect to the MCP endpoint
- The AI agent can now use all KevoDB operations through the MCP interface
License
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。