Knowledge Base Tools

Knowledge Base Tools

Provides AI agents with tools to navigate, search, and manage a hierarchical knowledge base of themes, skills, and learning resources with tenant-aware JWT authentication.

Category
访问服务器

README

MCP Server - Knowledge Base Tools

MCP (Model Context Protocol) server exposing knowledge base operations as tools for AI agents.

Overview

This MCP server provides tools for interacting with the Django backend API to manage and query the knowledge base. All tools require JWT authentication and automatically handle tenant-aware routing.

Features

  • JWT Authentication: Token verification using shared secret with Django backend
  • Tenant-aware: Automatically extracts tenant from JWT and routes to correct backend instance
  • 8 Knowledge Base Tools: Complete set of operations for navigating and managing the knowledge graph

Installation

  1. Create and activate virtual environment (recommended):

    python3 -m venv venv
    
    # On macOS/Linux:
    source venv/bin/activate
    
    # On Windows:
    # venv\Scripts\activate
    
  2. Install dependencies:

    pip install -r requirements.txt
    
  3. Configure environment variables:

    cp .env.example .env
    # Edit .env with your configuration
    

Configuration

Environment Variables

  • MCP_JWT_SECRET_KEY: Secret key for JWT token verification (can use CHAINLIT_JWT_SECRET_KEY as fallback)
  • MCP_BACKEND_URL: Backend URL with tenant placeholder, e.g., http://tenant.localhost:8000 (can use BACKEND_URL as fallback)

Example .env file:

MCP_JWT_SECRET_KEY=your-secret-key-here
MCP_BACKEND_URL=http://tenant.localhost:8000

Available Tools

1. get_root_themes_tool

Get all root theme nodes (top-level folders without parents). Entry point for navigating the knowledge base.

2. get_folder_tree_tool

Get complete folder tree under a theme node. Returns only themes recursively, excluding skills and knowledge nodes.

3. semantic_search_tool

Perform semantic search across themes, skills, and knowledge nodes using vector similarity.

4. get_node_children_tool

Get direct children of a node for downward navigation in the hierarchy.

5. get_node_parents_tool

Get direct parent nodes for upward navigation in the hierarchy.

6. create_folder_tool

Create a new theme (folder) node at root or under a parent theme.

7. create_skill_tool

Create a new skill node under a parent theme.

8. generate_learning_tools_tool

Generate learning tools (knowledge nodes with questions) for a skill using AI.

Running the Server

Make sure your virtual environment is activated before running the server.

Start the HTTP/SSE server:

# Activate venv first
source venv/bin/activate  # On macOS/Linux
# venv\Scripts\activate   # On Windows

python server.py

The server will start on http://0.0.0.0:8100 by default (configurable via environment variables).

Configuration options:

  • MCP_HOST: Host to bind (default: 0.0.0.0)
  • MCP_PORT: Port number (default: 8100 - port 8000 is used by the Django backend)
  • MCP_TRANSPORT: Transport type - sse (Server-Sent Events) or streamable-http (default: sse)

With MCP Inspector (for testing):

  1. Start the server:

    python server.py
    
  2. In MCP Inspector, configure the connection:

    • Type: sse
    • URL: http://localhost:8100/sse (use localhost not 0.0.0.0 in browser)

    Example configuration:

    {
      "mcpServers": {
        "knowledge-base": {
          "type": "sse",
          "url": "http://localhost:8100/sse"
        }
      }
    }
    

    Note: The server binds to 0.0.0.0 but you must use localhost or 127.0.0.1 in browser-based clients.

Usage

All tools require a jwt_token parameter containing the user's JWT authentication token. The token should:

  • Be a valid JWT signed with the same secret as configured in MCP_JWT_SECRET_KEY
  • Contain a tenant claim for tenant-aware routing
  • Be passed as a Bearer token or raw token string

Example tool call:

result = get_root_themes_tool(
    jwt_token="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..."
)

Architecture

  • auth.py: JWT token verification and tenant extraction
  • tools.py: Core tool functions that interact with Django backend
  • server.py: FastMCP server setup and tool registration

Security

  • All tools verify JWT tokens before processing requests
  • Tenant is extracted from token payload (never from user input)
  • Backend URL is constructed from token, ensuring tenant isolation
  • Invalid or expired tokens return error responses

Error Handling

All tools return a dictionary with:

  • success: true and data on success
  • success: false and error: "message" on failure

Development

The server uses FastMCP, which automatically handles:

  • Tool registration
  • Request/response serialization
  • Error handling
  • Logging

Related Files

  • shad/agents/tools.py: Original LangChain tools (reference implementation)
  • backend/learn/: Django backend API endpoints

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选