KOI-MCP Integration

KOI-MCP Integration

A bridging framework that integrates Knowledge Organization Infrastructure (KOI) with Model Context Protocol (MCP), enabling autonomous agents to exchange personality traits and expose capabilities as standardized tools.

Category
访问服务器

README

KOI-MCP Integration

Python 3.12 FastAPI KOI-Net

A bridging framework that integrates the Knowledge Organization Infrastructure (KOI) with the Model Context Protocol (MCP), enabling autonomous agents to exchange rich personality traits and expose capabilities as standardized tools.

Quick Start

Prerequisites

Installation

# Clone the repository
git clone https://github.com/block-science/koi-mcp.git
cd koi-mcp

# Create and activate virtual environment
uv venv --python 3.12
source .venv/bin/activate  # On Windows: .venv\Scripts\activate

# Install the package with development dependencies
uv pip install -e ".[dev]"

Running the Demo

The quickest way to see KOI-MCP in action is to run the demo:

python scripts/demo.py

This provides a rich interactive console with detailed event logging and component status displays.

Alternatively, you can run a simplified demo using the main module:

# Run demo (starts coordinator and two example agents)
python -m koi_mcp.main demo

This starts a coordinator node and two agent nodes with different personality traits. You can then visit:

Running Components Individually

You can also run the components separately:

# Run coordinator node
python -m koi_mcp.main coordinator

# Run agent nodes
python -m koi_mcp.main agent --config configs/agent1.json
python -m koi_mcp.main agent --config configs/agent2.json

Architecture

The KOI-MCP integration follows a Coordinator-Adapter pattern:

flowchart TD
    subgraph "Coordinator-Adapter Node"
        CN[KOI Coordinator Node]
        AD[MCP Adapter]
        MC[MCP Context Registry]
    end

    subgraph "Agent Node A"
        A1[KOI Agent Node]
        A2[Personality Bundle]
        A3[MCP Server]
    end

    subgraph "Agent Node B"
        B1[KOI Agent Node]
        B2[Personality Bundle]
        B3[MCP Server]
    end

    CN <-->|Node Discovery| A1
    CN <-->|Node Discovery| B1
    A1 -->|Personality Broadcast| CN
    B1 -->|Personality Broadcast| CN
    CN --> AD
    AD --> MC
    MC -->|Agent Registry| C[LLM Clients]
    A3 -->|Tools/Resources| C
    B3 -->|Tools/Resources| C
  1. KOI Coordinator Node: Acts as a central hub for the KOI network, handling agent discovery and state synchronization
  2. MCP Adapter: Converts KOI personality bundles into MCP-compatible resources and tools
  3. Agent Nodes: Individual agents with personalities that broadcast their traits to the network
  4. MCP Registry Server: Exposes the adapter's registry as MCP-compatible endpoints
  5. MCP Agent Servers: Individual servers for each agent that expose their specific traits as endpoints

Agent Personality Model

Agents express their capabilities through a trait-based personality model:

# Example agent configuration
{
  "agent": {
    "name": "helpful-agent",
    "version": "1.0",
    "traits": {
      "mood": "helpful",
      "style": "concise",
      "interests": ["ai", "knowledge-graphs"],
      "calculate": {
        "description": "Performs simple calculations",
        "is_callable": true
      }
    }
  }
}

Each trait can be:

  • A simple value (string, number, boolean, list)
  • A complex object with metadata (description, type, is_callable)
  • A callable tool that can be invoked by LLM clients

Implementation Details

Agent Personality RID

The system extends KOI's Resource Identifier (RID) system with a dedicated AgentPersonality type:

class AgentPersonality(ORN):
    namespace = "agent.personality"

    def __init__(self, name, version):
        self.name = name
        self.version = version

    @property
    def reference(self):
        return f"{self.name}/{self.version}"

Personality Profile Schema

Agent personalities are structured using Pydantic models:

class PersonalityProfile(BaseModel):
    rid: AgentPersonality
    node_rid: KoiNetNode
    base_url: Optional[str] = None
    mcp_url: Optional[str] = None
    traits: List[PersonalityTrait] = Field(default_factory=list)

Knowledge Processing Pipeline

The system integrates with KOI's knowledge processing pipeline through specialized handlers:

@processor.register_handler(HandlerType.Bundle, rid_types=[AgentPersonality])
def personality_bundle_handler(proc: ProcessorInterface, kobj: KnowledgeObject):
    """Process agent personality bundles."""
    try:
        # Validate contents as PersonalityProfile
        profile = PersonalityProfile.model_validate(kobj.contents)

        # Register with MCP adapter if available
        if mcp_adapter is not None:
            mcp_adapter.register_agent(profile)

        return kobj
    except ValidationError:
        return STOP_CHAIN

MCP Endpoint Integration

The integration provides MCP-compatible REST endpoints:

Coordinator Registry Endpoints

  • GET /resources/list: List all known agent resources
  • GET /resources/read/{resource_id}: Get details for a specific agent
  • GET /tools/list: List all available agent tools

Agent Server Endpoints

  • GET /resources/list: List this agent's personality as a resource
  • GET /resources/read/agent:{name}: Get this agent's personality details
  • GET /tools/list: List this agent's callable traits as tools
  • POST /tools/call/{trait_name}: Call a specific trait as a tool

Configuration

Coordinator Configuration

{
  "coordinator": {
    "name": "koi-mcp-coordinator",
    "base_url": "http://localhost:9000/koi-net",
    "mcp_registry_port": 9000
  }
}

Agent Configuration

{
  "agent": {
    "name": "helpful-agent",
    "version": "1.0",
    "base_url": "http://localhost:8100/koi-net",
    "mcp_port": 8101,
    "traits": {
      "mood": "helpful",
      "style": "concise",
      "interests": ["ai", "knowledge-graphs"],
      "calculate": {
        "description": "Performs simple calculations",
        "is_callable": true
      }
    }
  },
  "network": {
    "first_contact": "http://localhost:9000/koi-net"
  }
}

Advanced Usage

Updating Traits at Runtime

Agents can update their traits dynamically:

agent = KoiAgentNode(...)
agent.update_traits({
    "mood": "enthusiastic",
    "new_capability": {
        "description": "A new capability added at runtime",
        "is_callable": True
    }
})

Custom Knowledge Handlers

You can register custom handlers for personality processing:

@processor.register_handler(HandlerType.Network, rid_types=[AgentPersonality])
def my_custom_network_handler(proc: ProcessorInterface, kobj: KnowledgeObject):
    # Custom logic for determining which nodes should receive personality updates
    # ...
    return kobj

Development

Running Tests

# Run all tests
pytest

# Run tests with coverage report
pytest --cov=koi_mcp

Project Structure

koi-mcp/
├── configs/                 # Configuration files for nodes
├── docs/                    # Documentation and design specs
├── scripts/                 # Utility scripts
├── src/                     # Source code
│   └── koi_mcp/
│       ├── koi/             # KOI integration components
│       │   ├── handlers/    # Knowledge processing handlers
│       │   └── node/        # Node implementations
│       ├── personality/     # Personality models
│       │   ├── models/      # Data models for traits and profiles
│       │   └── rid.py       # Agent personality RID definition
│       ├── server/          # MCP server implementations
│       │   ├── adapter/     # KOI-to-MCP adapter
│       │   ├── agent/       # Agent server
│       │   └── registry/    # Registry server
│       ├── utils/           # Utility functions
│       ├── config.py        # Configuration handling
│       └── main.py          # Main entry point
└── tests/                   # Test suite

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选