Kubernetes MCP Server

Kubernetes MCP Server

Enables interactive Kubernetes cluster monitoring and troubleshooting through natural language queries. Users can diagnose pod issues, check service status, and investigate cluster problems using conversational AI.

Category
访问服务器

README

Kubernetes MCP Server

An interactive Kubernetes monitoring system built with Flask and OpenAI's Model Context Protocol (MCP). This project provides an agentic interface for diagnosing cluster issues using natural language queries.

Features

  • Flask MCP Server: Exposes Kubernetes cluster data via JSON-RPC endpoints
  • Interactive Client: Ask questions like "What is the status of the checkout service?"
  • OpenAI Integration: Uses GPT models to intelligently investigate cluster problems
  • Kubernetes Integration: Real-time pod monitoring, events, and logs
  • Colorized Output: Beautiful terminal interface with ANSI colors

Architecture

┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   Interactive   │───▶│   Flask MCP      │───▶│   Kubernetes    │
│     Client      │    │     Server       │    │    Cluster      │
│   (client.py)   │    │   (server.py)    │    │   (KIND/etc)    │
└─────────────────┘    └──────────────────┘    └─────────────────┘
         │                       │
         ▼                       ▼
┌─────────────────┐    ┌──────────────────┐
│   OpenAI GPT    │    │  Static Fixtures │
│   (optional)    │    │  (metrics, etc)  │
└─────────────────┘    └──────────────────┘

Setup

Prerequisites

  • Python 3.9+
  • Kubernetes cluster (KIND recommended for local development)
  • OpenAI API key (optional, fallback mode available)

Installation

  1. Clone the repository:
git clone https://github.com/YOUR_USERNAME/YOUR_REPO_NAME.git
cd YOUR_REPO_NAME
  1. Install dependencies:
pip install flask kubernetes openai requests
  1. Set up environment variables:
export OPENAI_API_KEY="your-api-key-here"  # Optional
export KUBECONFIG="path/to/your/kubeconfig"  # If not using default

Running the Server

cd mcp
python3 server.py

The server will start on http://localhost:5050

Running the Interactive Client

cd mcp
python3 client.py

Usage

Interactive Mode

Start the client and ask natural language questions:

> what is the status of my checkout service?
> show failing pods in namespace staging  
> summarize errors for service payments in the last 45 minutes

One-shot Mode

python3 client.py --ask "what pods are failing in default namespace?"

Available Tools

  • k8s.listProblemPods - Find problematic pods
  • k8s.getPodDetails - Get detailed pod information
  • deployments.listRecentChanges - Recent deployment history
  • metrics.getErrors - Error rate analysis
  • traces.sampleErrors - Sample failing traces
  • config.getDiff - Configuration changes

Example Output

=== 🧩 FINAL ANSWER ===

📋 Summary:
  The pod 'demo-fail-5df44cbf79-tqg6l' is experiencing CrashLoopBackOff

🔍 Evidence:
  • Pod: demo-fail-5df44cbf79-tqg6l
    Status: Running
    Restarts: 115
    Reason: CrashLoopBackOff

⚠️  Probable Cause:
  Application failing to start successfully due to exit code 1

🛠️  Safe Next Step:
  Investigate application logs and configuration

✅ Confidence: High

Configuration

Environment variables:

  • RPC_URL - MCP server URL (default: http://127.0.0.1:5050/rpc)
  • OPENAI_API_KEY - OpenAI API key for LLM features
  • OPENAI_MODEL - Model to use (default: gpt-4o-mini)
  • SERVICE - Default service name (default: checkout)
  • NAMESPACE - Default K8s namespace (default: default)
  • SINCE_MINS - Time window for queries (default: 120)

Development

Project Structure

mcp-demo/
├── mcp/
│   ├── server.py           # Flask MCP server
│   ├── client.py           # Interactive client
│   ├── tools_catalog.json  # Tool definitions
│   └── fixtures/           # Static test data
├── k8s/
│   └── deployment.yaml     # Sample K8s resources
└── README.md

Adding New Tools

  1. Add tool definition to tools_catalog.json
  2. Implement handler in server.py
  3. Test with client

Demo

https://github.com/user-attachments/assets/e30a7a69-ff7a-46f1-a2ff-e75eff79334b

License

MIT License

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选