Kulturpool MCP Server

Kulturpool MCP Server

Provides access to Austrian cultural heritage through the Kulturpool API, enabling search and discovery of cultural objects from major Austrian institutions like Albertina, Belvedere, and the Austrian National Library with progressive filtering and rate-limited security.

Category
访问服务器

README

Kulturerbe MCP Server

Model Context Protocol (MCP) server for searching Austrian Cultural Heritage via the Kulturpool API.

Python MCP License

Overview

This MCP server provides secure, rate-limited access to Austria's cultural heritage through the Kulturpool API. It implements a 6-tool progressive disclosure architecture designed for efficient context window usage and comprehensive cultural object discovery.

Features

🔍 6-Tool Progressive Disclosure Architecture

  1. kulturpool_explore - Initial exploration with facet analysis (< 2KB response)
  2. kulturpool_search_filtered - Targeted search with comprehensive filters (≤ 20 results)
  3. kulturpool_get_details - Find related objects using content-based search (≤ 3 IDs)
  4. kulturpool_get_institutions - Complete institution directory with locations
  5. kulturpool_get_institution_details - Detailed institution metadata
  6. kulturpool_get_assets - Optimized image assets with transformations

🛡️ Built-in Security

  • Input Sanitization: Protection against injection attacks
  • Rate Limiting: 100 requests/hour per client
  • Response Limits: < 10KB responses for context efficiency
  • Parameter Validation: Comprehensive Pydantic-based validation
  • Safe URL Handling: Restricted to Kulturpool API endpoints

Performance Optimized

  • Progressive Disclosure: Start broad, then narrow down
  • Compressed Responses: Essential metadata only
  • Facet-Based Navigation: Smart filtering recommendations
  • Connection Pooling: Efficient HTTP client with retry logic

Installation

Prerequisites

  • Python 3.8 or higher
  • pip package manager
  • Git (for cloning the repository)

Setup

  1. Clone the repository:

    git clone https://github.com/yourusername/kulturerbe_mcp.git
    cd kulturerbe_mcp
    
  2. Create and activate virtual environment:

    Windows:

    python -m venv .venv
    .venv\Scripts\activate
    

    Linux/WSL/macOS:

    python3 -m venv .venv
    source .venv/bin/activate
    
  3. Install dependencies:

    pip install -r requirements.txt
    
  4. Test the server:

    Windows:

    python server.py
    

    Linux/WSL/macOS:

    python3 server.py
    

Claude Desktop Configuration

Add the server to your Claude Desktop MCP configuration file:

Configuration file locations:

  • Windows: %APPDATA%\Claude\claude_desktop_config.json
  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Linux: ~/.config/Claude/claude_desktop_config.json

Option 1: Windows with WSL (Recommended for this project)

{
  "mcpServers": {
    "kulturerbe-mcp-server": {
      "command": "wsl",
      "args": ["-e", "/home/username/kulturerbe_mcp/run_server.sh"],
      "cwd": "\\\\wsl$\\Ubuntu\\home\\username\\kulturerbe_mcp",
      "env": {
        "VIRTUAL_ENV": "/home/username/kulturerbe_mcp/.venv",
        "PATH": "/home/username/kulturerbe_mcp/.venv/bin:$PATH"
      }
    }
  }
}

Option 2: Windows Native

{
  "mcpServers": {
    "kulturerbe-mcp-server": {
      "command": "python",
      "args": ["C:\\path\\to\\kulturerbe_mcp\\server.py"],
      "cwd": "C:\\path\\to\\kulturerbe_mcp",
      "env": {}
    }
  }
}

Option 3: Linux/macOS

{
  "mcpServers": {
    "kulturerbe-mcp-server": {
      "command": "python3",
      "args": ["/path/to/kulturerbe_mcp/server.py"],
      "cwd": "/path/to/kulturerbe_mcp",
      "env": {}
    }
  }
}

Claude Code Configuration

For Claude Code in WSL/Linux environment:

{
  "mcpServers": {
    "kulturerbe-mcp-server": {
      "command": "/home/username/kulturerbe_mcp/run_server.sh",
      "args": [],
      "cwd": "/home/username/kulturerbe_mcp",
      "env": {
        "VIRTUAL_ENV": "/home/username/kulturerbe_mcp/.venv",
        "PATH": "/home/username/kulturerbe_mcp/.venv/bin:$PATH"
      }
    }
  }
}

📝 Note: Pre-configured options are available in mcp_config.json - copy the relevant section to your configuration file.

Alternative: Launcher Scripts

Windows:

run_server.bat

Linux/WSL/macOS:

chmod +x run_server.sh
./run_server.sh

Usage Guide

1. Initial Exploration

Start with broad exploration to understand available data:

# Get overview with facets
kulturpool_explore(query="Mozart")

Returns: Facet counts by institution, type, and time period with sample results.

2. Filtered Search

Use facets to narrow down results:

# Targeted search with filters
kulturpool_search_filtered(
    query="Vienna",
    institutions=["Albertina", "Belvedere"],
    object_types=["IMAGE"],
    date_from=1800,
    date_to=1900,
    creators=["Klimt"],
    limit=15
)

Advanced Filters:

  • Date Range: Interval overlap semantics (object's [dateMin,dateMax] overlaps [date_from,date_to])
  • Creators: Partial matching with wildcards
  • Subjects: Exact matching for topics
  • Media: Filter by material/medium
  • Dublin Core Types: Performance-limited object categorization

3. Related Object Discovery

Find related cultural objects using content-based search:

# Find related objects
kulturpool_get_details(object_ids=["obj123", "obj456"])

4. Institution Management

Explore participating institutions:

# Get institution directory
kulturpool_get_institutions(include_locations=True, language="de")

# Get detailed institution info
kulturpool_get_institution_details(institution_id=42, language="de")

5. Asset Optimization

Access optimized images with transformations:

# Get optimized image assets
kulturpool_get_assets(
    asset_id="logo_123",
    width=400,
    height=300,
    format="webp",
    quality=85,
    fit="inside"
)

Selection of supported institutions

Major Austrian cultural institutions participate in the Kulturpool network:

Development

Architecture

The server is built as a single-file implementation (server.py, ~1300 lines) with:

  • MCP Protocol: Traditional stdio transport
  • Async/Await: Full asynchronous operation
  • Pydantic Validation: Type-safe parameter handling
  • Security Layer: Input sanitization and rate limiting
  • Error Handling: Comprehensive exception management

Key Components

├── SecurityValidator     # Input sanitization and validation
├── RateLimiter          # Request rate limiting (100/hour)
├── KulturpoolClient     # HTTP client with retry logic
├── ResponseProcessor    # Data processing and facet analysis
└── Tool Handlers        # Six specialized tool implementations

Configuration

Environment Variables

No environment variables required - the server connects directly to the public Kulturpool API.

Rate Limiting

  • Default: 100 requests per hour per client
  • Configurable: Modify RateLimiter(max_requests=100, time_window=3600)
  • Scope: Global across all tool calls

Response Limits

  • Explore: < 2KB responses with facets
  • Search: ≤ 20 results with full metadata
  • Details: ≤ 3 object IDs per request
  • Overall: < 10KB response size limit

API Reference

Data Sources

This server provides access to:

  • Base API: https://api.kulturpool.at/search/
  • Institution API: https://api.kulturpool.at/institutions/
  • Asset API: https://api.kulturpool.at/assets/

Object Types

  • IMAGE: Photographs, paintings, drawings, graphics
  • TEXT: Manuscripts, books, documents, letters
  • SOUND: Audio recordings, music, oral history
  • VIDEO: Film recordings, documentaries
  • 3D: Three-dimensional objects, sculptures

Sort Options

  • titleSort:asc/desc - Alphabetical by title
  • dataProvider:asc/desc - By institution
  • dateMin:asc/desc - By earliest date
  • dateMax:asc/desc - By latest date

Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE.txt file for details.

Support

Development Credits

This MCP server was developed at the ÖAW-ACDH using Vibe Coding methodologies with assistance from Claude Sonnet 4 via the Claude Code CLI.

⚠️ Beta Disclaimer

This MCP server is a beta version and experimental software.

  • This software has undergone limited testing and should be considered experimental
  • Use at your own risk in production environments
  • The developers assume no liability for any damages, data loss, or other consequences arising from the use of this software
  • No warranty is provided, either express or implied, regarding the functionality, reliability, or suitability of this software for any particular purpose

Acknowledgments

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选