Kustomize MCP
An MCP server designed to help AI models refactor Kubernetes configurations by analyzing Kustomize dependencies and rendering manifest diffs across environments. It provides tools for computing file dependencies, rendering overlays, and comparing configuration changes through a checkpointing system.
README
Kustomize MCP
An MCP server that helps to refactor Kubernetes configuration based on Kustomize.
Why? Because Kustomize manifests depend on each other in non-obvious ways, it's hard for a model to understand how a config change may impact multiple environments. This MCP server gives them extra tools to make this safer:
- Compute dependencies of a manifest
- Render the end result of Kustomize overlays
- Provide full and summarized diffs between overlays across directories and checkpoints.
Available Tools
create_checkpoint: Creates a checkpoint where rendered configuration will be stored.clear_checkpoint: Clears all checkpoints or a specific checkpointrender: Renders Kustomize configuration and saves it in a checkpointdiff_checkpoints: Compares all rendered configuration across two checkpointsdiff_paths: Compares two Kustomize configurations rendered in the same checkpointdependencies: Returns dependencies for a Kustomization file
Running the Server
[!NOTE] This requires access to your local file system, similarly to how the filesystem MCP Server works.
Using Docker
Run the server in a container (using the pre-built image):
docker run -i --rm -v "$(pwd):/workspace" ghcr.io/mbrt/kustomize-mcp:latest
The Docker image includes:
- Python 3.13 with all project dependencies
- kustomize (latest stable)
- helm (latest stable)
- git
Mount your Kustomize configurations to the /workspace directory in the
container to work with them.
If you want to rebuild the image from source:
docker build -t my-kustomize-mcp:latest .
And use that image instead of ghcr.io/mbrt/kustomize-mcp.
Using UV (Local Development)
Start the MCP server:
uv run server.py
The server will start by using the STDIO transport.
Usage with MCP clients
To integrate with VS Code, add the configuration to your user-level MCP
configuration file. Open the Command Palette (Ctrl + Shift + P) and run MCP: Open User Configuration. This will open your user mcp.json file where you can
add the server configuration.
{
"servers": {
"kustomize": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"--mount", "type=bind,src=${workspaceFolder},dst=/workspace",
"ghcr.io/mbrt/kustomize-mcp:latest"
]
}
}
}
To integrate with Claude Code, add this to your claude_desktop_config.json:
{
"mcpServers": {
"kustomize": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"-a", "stdin",
"-a", "stdout",
"-v", "<PROJECT_DIR>:/workspace",
"ghcr.io/mbrt/kustomize-mcp:latest"
]
}
}
}
Replace <PROJECT_DIR> with the root directory of your project.
To integrate with Gemini CLI, edit .gemini/settings.json:
{
"mcpServers": {
"kustomize": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"-a", "stdin",
"-a", "stdout",
"-v", "${PWD}:/workspace",
"ghcr.io/mbrt/kustomize-mcp:latest"
]
}
}
}
Testing the Server
Run unit tests:
pytest
After running the server on one shell, use the dev tool to verify the server is working:
uv run mcp dev ./server.py
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。