Label Studio MCP Server
Label Studio MCP Server
README
Label Studio MCP Server
Overview
This project provides a Model Context Protocol (MCP) server that allows interaction with a Label Studio instance using the label-studio-sdk. It enables programmatic management of labeling projects, tasks, and predictions via natural language or structured calls from MCP clients. Using this MCP Server, you can make requests like:
- "Create a project in label studio with this data ..."
- "How many tasks are labeled in my RAG review project?"
- "Add predictions for my tasks."
- "Update my labeling template to include a comment box."
<img src="./static/example.png" alt="Example usage of Label Studio MCP Server" width="600">
Features
- Project Management: Create, update, list, and view details/configurations of Label Studio projects.
- Task Management: Import tasks from files, list tasks within projects, and retrieve task data/annotations.
- Prediction Integration: Add model predictions to specific tasks.
- SDK Integration: Leverages the official
label-studio-sdkfor communication.
Prerequisites
- Running Label Studio Instance: You need a running instance of Label Studio accessible from where this MCP server will run.
- API Key: Obtain an API key from your user account settings in Label Studio.
Configuration
The MCP server requires the URL and API key for your Label Studio instance. If launching the server via an MCP client configuration file, you can specify the environment variables directly within the server definition. This is often preferred for client-managed servers.
Add the following JSON entry to your claude_desktop_config.json file or Cursor MCP settings:
{
"mcpServers": {
"label-studio": {
"command": "uvx",
"args": [
"--from",
"git+https://github.com/HumanSignal/label-studio-mcp-server",
"mcp-label-studio"
],
"env": {
"LABEL_STUDIO_API_KEY": "your_actual_api_key_here", // <-- Your API key
"LABEL_STUDIO_URL": "http://localhost:8080"
}
}
}
}
<!--
Installation
Follow these instructions to install the server.
git clone https://github.com/HumanSignal/label-studio-mcp-server.git
cd label-studio-mcp-server
# Install dependencies using uv
uv venv
source .venv/bin/activate
uv sync
```json
{
"mcpServers": {
"label-studio": {
"command": "uv",
"args": [
"--directory",
"/path/to/your/label-studio-mcp-server", // <-- Update this path
"run",
"label-studio-mcp.py"
],
"env": {
"LABEL_STUDIO_API_KEY": "your_actual_api_key_here", // <-- Your API key
"LABEL_STUDIO_URL": "http://localhost:8080"
}
}
}
}
```
When configured this way, the `env` block injects the variables into the server process environment, and the script's `os.getenv()` calls will pick them up. -->
Tools
The MCP server exposes the following tools:
Project Management
get_label_studio_projects_tool(): Lists available projects (ID, title, task count).get_label_studio_project_details_tool(project_id: int): Retrieves detailed information for a specific project.get_label_studio_project_config_tool(project_id: int): Fetches the XML labeling configuration for a project.create_label_studio_project_tool(title: str, label_config: str, ...): Creates a new project with a title, XML config, and optional settings. Returns project details including a URL.update_label_studio_project_config_tool(project_id: int, new_label_config: str): Updates the XML labeling configuration for an existing project.
Task Management
list_label_studio_project_tasks_tool(project_id: int): Lists task IDs within a project (up to 100).get_label_studio_task_data_tool(project_id: int, task_id: int): Retrieves the data payload for a specific task.get_label_studio_task_annotations_tool(project_id: int, task_id: int): Fetches existing annotations for a specific task.import_label_studio_project_tasks_tool(project_id: int, tasks_file_path: str): Imports tasks from a JSON file (containing a list of task objects) into a project. Returns import summary and project URL.
Predictions
create_label_studio_prediction_tool(task_id: int, result: List[Dict[str, Any]], ...): Creates a prediction for a specific task. Requires the prediction result as a list of dictionaries matching the Label Studio format. Optionalmodel_versionandscore.
Example Use Case
- Create a new project using
create_label_studio_project_tool. - Prepare a JSON file (
tasks.json) with task data. - Import tasks using
import_label_studio_project_tasks_tool, providing the project ID from step 1 and the path totasks.json. - List task IDs using
list_label_studio_project_tasks_tool. - Get data for a specific task using
get_label_studio_task_data_tool. - Generate a prediction result structure (list of dicts).
- Add the prediction using
create_label_studio_prediction_tool.
Contact
For questions or support, reach out via GitHub Issues.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。