
Lanalyzer MCP Server
Provides Python code security analysis through the Model Context Protocol, enabling AI tools to detect potential vulnerabilities like SQL injection and XSS by identifying tainted data flows from untrusted sources to sensitive operations.
README
Lanalyzer
Lanalyzer is an advanced Python static taint analysis tool designed to detect potential security vulnerabilities in Python projects. It identifies data flows from untrusted sources (Sources) to sensitive operations (Sinks) and provides detailed insights into potential risks.
📖 Table of Contents
- ✨ Features
- 🚀 Getting Started
- 💻 Usage
- 🧩 Model Context Protocol (MCP) Support
- 🤝 Contributing
- 📄 License
- 📞 Contact
✨ Features
- Taint Analysis: Tracks data flows from sources to sinks.
- Customizable Rules: Define your own sources, sinks, sanitizers, and taint propagation paths.
- Static Analysis: No need to execute the code.
- Extensibility: Easily add new rules for detecting vulnerabilities like SQL Injection, XSS, and more.
- Detailed Reports: Generate comprehensive analysis reports with vulnerability details and mitigation suggestions.
- Command-Line Interface: Run analyses directly from the terminal.
🚀 Getting Started
Prerequisites
- Python 3.10 or higher
- uv (recommended for dependency management)
Steps
-
Clone the repository:
git clone https://github.com/mxcrafts/lanalyzer.git cd lanalyzer
-
Create a virtual environment and install dependencies:
uv venv uv pip sync pyproject.toml --all-extras
-
Activate the virtual environment:
source .venv/bin/activate
💻 Usage
Basic Analysis
Run a taint analysis on a Python file:
lanalyzer --target <target_file> --config <config_file> --pretty --output <output_file> --log-file <log_file> --debug
Command-Line Options
--target
: Path to the Python file or directory to analyze.--config
: Path to the configuration file.--output
: Path to save the analysis report.--log-file
: Path to save the log file.--pretty
: Pretty-print the output.--detailed
: Show detailed analysis statistics.--debug
: Enable debug mode with detailed logging.
Example
lanalyzer --target example.py --config rules/sql_injection.json --pretty --output example_analysis.json --log-file example_analysis.log --debug
🤝 Contributing
We welcome contributions! Please see the CONTRIBUTING.md file for guidelines on how to contribute to Lanalyzer.
📄 License
This project is licensed under the GNU Affero General Public License v3.0. See the LICENSE file for details.
📞 Contact
Contact
- Issues: GitHub Issues
- Email: support@mx-crafts.com
🧩 Model Context Protocol (MCP) Support
Lanalyzer now supports the Model Context Protocol (MCP), allowing it to run as an MCP server that AI models and tools can use to access taint analysis functionality through a standard interface.
Installing MCP Dependencies
If you're using pip:
pip install "lanalyzer[mcp]"
If you're using uv:
uv pip install -e ".[mcp]"
Starting the MCP Server
There are multiple ways to start the MCP server:
- Using Python Module:
# View help information
python -m lanalyzer.mcp --help
# Start the server
python -m lanalyzer.mcp run --host 0.0.0.0 --port 8000 --debug
- Using the lanalyzer Command-Line Tool:
# View help information
lanalyzer mcp --help
# Start the server
lanalyzer mcp run --host 0.0.0.0 --port 8000 --debug
# Use FastMCP development mode (if applicable, verify this command)
# lanalyzer mcp dev
MCP Server Features
The MCP server provides the following core functionalities:
- Code Analysis: Analyze Python code strings for security vulnerabilities
- File Analysis: Analyze specific files for security vulnerabilities
- Path Analysis: Analyze entire directories or projects for security vulnerabilities
- Vulnerability Explanation: Provide detailed explanations of discovered vulnerabilities
- Configuration Management: Get, validate, and create analysis configurations
Integration with AI Tools
The MCP server can be integrated with AI tools that support the MCP protocol:
# Using the FastMCP client
from fastmcp import FastMCPClient
# Create a client connected to the server
client = FastMCPClient("http://127.0.0.1:8000")
# Analyze code
result = client.call({
"type": "analyze_code",
"code": "user_input = input()\nquery = f\"SELECT * FROM users WHERE name = '{user_input}'\"",
"file_path": "example.py",
"config_path": "/path/to/config.json"
})
# Print analysis results
print(result)
Using in Cursor
If you're working in the Cursor editor, you can directly ask the AI to use Lanalyzer to analyze your code:
Please use lanalyzer to analyze the current file for security vulnerabilities and explain the potential risks.
MCP Command-Line Options
The MCP server supports the following command-line options:
--debug
: Enable debug mode with detailed logging--host
: Set the server listening address (default: 127.0.0.1)--port
: Set the server listening port (default: 8000)
Advanced MCP Usage
Custom Configurations
You can use the get_config, validate_config, and create_config tools to manage vulnerability detection configurations:
# Get the default configuration
config = client.call({
"type": "get_config"
})
# Create a new configuration
result = client.call({
"type": "create_config",
"config_data": {...}, # Configuration data
"config_path": "/path/to/save/config.json" # Optional
})
Batch File Analysis
Analyze an entire project or directory:
result = client.call({
"type": "analyze_path",
"target_path": "/path/to/project",
"config_path": "/path/to/config.json",
"output_path": "/path/to/output.json" # Optional
})
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。