LangChain Agent MCP Server
Exposes LangChain agent capabilities through the Model Context Protocol, enabling multi-step reasoning tasks with ReAct pattern execution via a production-ready FastAPI service deployed on Google Cloud Run.
README
LangChain Agent MCP Server
A production-ready MCP server exposing LangChain agent capabilities through the Model Context Protocol, deployed on Google Cloud Run.
🚀 Overview
This is a standalone backend service that wraps a LangChain agent as a single, high-level MCP Tool. The server is built with FastAPI and deployed on Google Cloud Run, providing a scalable, production-ready solution for exposing AI agent capabilities to any MCP-compliant client.
Live Service: https://langchain-agent-mcp-server-554655392699.us-central1.run.app
✨ Features
- ✅ MCP Compliance - Full Model Context Protocol support
- ✅ LangChain Agent - Multi-step reasoning with ReAct pattern
- ✅ Google Cloud Run - Scalable, serverless deployment
- ✅ Tool Support - Extensible framework for custom tools
- ✅ Production Ready - Error handling, logging, and monitoring
- ✅ Docker Support - Containerized for easy deployment
🏗️ Architecture
| Component | Technology | Purpose |
|---|---|---|
| Backend Framework | FastAPI | High-performance, asynchronous web server |
| Agent Framework | LangChain | Multi-step reasoning and tool execution |
| Deployment | Google Cloud Run | Serverless, auto-scaling hosting |
| Containerization | Docker | Consistent deployment environment |
| Protocol | Model Context Protocol (MCP) | Standardized tool and context sharing |
🛠️ Quick Start
Prerequisites
- Python 3.11+
- OpenAI API key
- Google Cloud account (for Cloud Run deployment)
- Docker (optional, for local testing)
Local Development
-
Clone the repository:
git clone https://github.com/mcpmessenger/LangchainMCP.git cd LangchainMCP -
Install dependencies:
# Windows py -m pip install -r requirements.txt # Linux/Mac pip install -r requirements.txt -
Set up environment variables: Create a
.envfile:OPENAI_API_KEY=your-openai-api-key-here OPENAI_MODEL=gpt-4o-mini PORT=8000 -
Run the server:
# Windows py run_server.py # Linux/Mac python run_server.py -
Test the endpoints:
- Health: http://localhost:8000/health
- Manifest: http://localhost:8000/mcp/manifest
- API Docs: http://localhost:8000/docs
☁️ Google Cloud Run Deployment
The server is designed for deployment on Google Cloud Run. See our comprehensive deployment guides:
- DEPLOY_CLOUD_RUN_WINDOWS.md - Windows deployment guide
- DEPLOY_CLOUD_RUN.md - General deployment guide
- QUICK_DEPLOY.md - Quick reference
Quick Deploy
# Windows PowerShell
.\deploy-cloud-run.ps1 -ProjectId "your-project-id" -Region "us-central1"
# Linux/Mac
./deploy-cloud-run.sh your-project-id us-central1
Current Deployment
- Service URL: https://langchain-agent-mcp-server-554655392699.us-central1.run.app
- Project: slashmcp
- Region: us-central1
- Status: ✅ Live and operational
📡 API Endpoints
MCP Endpoints
Get Manifest
GET /mcp/manifest
Returns the MCP manifest declaring available tools.
Response:
{
"name": "langchain-agent-mcp-server",
"version": "1.0.0",
"tools": [
{
"name": "agent_executor",
"description": "Execute a complex, multi-step reasoning task...",
"inputSchema": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The user's query or task"
}
},
"required": ["query"]
}
}
]
}
Invoke Tool
POST /mcp/invoke
Content-Type: application/json
{
"tool": "agent_executor",
"arguments": {
"query": "What is the capital of France?"
}
}
Response:
{
"content": [
{
"type": "text",
"text": "The capital of France is Paris."
}
],
"isError": false
}
Other Endpoints
GET /- Server informationGET /health- Health checkGET /docs- Interactive API documentation (Swagger UI)
🔧 Configuration
Environment Variables
| Variable | Description | Default | Required |
|---|---|---|---|
OPENAI_API_KEY |
OpenAI API key | - | ✅ Yes |
OPENAI_MODEL |
OpenAI model to use | gpt-4o-mini |
No |
PORT |
Server port | 8000 |
No |
API_KEY |
Optional API key for authentication | - | No |
MAX_ITERATIONS |
Maximum agent iterations | 10 |
No |
VERBOSE |
Enable verbose logging | false |
No |
📚 Documentation
📖 Full Documentation Site - Complete documentation with examples (GitHub Pages)
Quick Links:
- Getting Started - Set up and run locally
- Examples - Code examples including "Build a RAG agent in 10 lines"
- Deployment Guide - Deploy to Google Cloud Run
- API Reference - Complete API documentation
- Troubleshooting - Common issues and solutions
Build Docs Locally:
# Windows
.\build-docs.ps1 serve
# Linux/Mac
./build-docs.sh serve
Additional Guides:
- README_BACKEND.md - Complete technical documentation
- DEPLOY_CLOUD_RUN_WINDOWS.md - Windows deployment guide
- INSTALL_PREREQUISITES.md - Prerequisites installation
- SLASHMCP_INTEGRATION.md - SlashMCP integration guide
🧪 Testing
# Test health endpoint
Invoke-WebRequest -Uri "https://langchain-agent-mcp-server-554655392699.us-central1.run.app/health"
# Test agent invocation
$body = @{
tool = "agent_executor"
arguments = @{
query = "What is 2+2?"
}
} | ConvertTo-Json
Invoke-WebRequest -Uri "https://langchain-agent-mcp-server-554655392699.us-central1.run.app/mcp/invoke" `
-Method POST `
-ContentType "application/json" `
-Body $body
🏗️ Project Structure
.
├── src/
│ ├── main.py # FastAPI application with MCP endpoints
│ ├── agent.py # LangChain agent definition and tools
│ ├── mcp_manifest.json # MCP manifest configuration
│ └── start.sh # Cloud Run startup script
├── tests/
│ └── test_mcp_endpoints.py # Test suite
├── Dockerfile # Container configuration
├── requirements.txt # Python dependencies
├── deploy-cloud-run.ps1 # Windows deployment script
├── deploy-cloud-run.sh # Linux/Mac deployment script
└── cloudbuild.yaml # Cloud Build configuration
🚀 Deployment Options
Google Cloud Run (Recommended)
- Scalable - Auto-scales based on traffic
- Serverless - Pay only for what you use
- Managed - No infrastructure to manage
- Fast - Low latency with global CDN
See DEPLOY_CLOUD_RUN_WINDOWS.md for detailed instructions.
Docker (Local/Other Platforms)
docker build -t langchain-agent-mcp-server .
docker run -p 8000:8000 -e OPENAI_API_KEY=your-key langchain-agent-mcp-server
📊 Performance
- P95 Latency: < 5 seconds for standard 3-step ReAct chains
- Scalability: Horizontal scaling on Cloud Run
- Uptime: 99.9% target (Cloud Run SLA)
- Throughput: Handles concurrent requests efficiently
🔒 Security
- API key authentication (optional)
- Environment variable management
- Secret Manager integration (Cloud Run)
- HTTPS by default (Cloud Run)
- CORS configuration
🤝 Contributing
We welcome contributions! Please see our contributing guidelines.
- Fork the repository
- Create a feature branch
- Make your changes
- Submit a pull request
📜 License
This project is licensed under the MIT License.
🔗 Links
- GitHub Repository: https://github.com/mcpmessenger/LangchainMCP
- Live Service: https://langchain-agent-mcp-server-554655392699.us-central1.run.app
- API Documentation: https://langchain-agent-mcp-server-554655392699.us-central1.run.app/docs
- Model Context Protocol: https://modelcontextprotocol.io/
🙏 Acknowledgments
- Built with LangChain
- Deployed on Google Cloud Run
- Uses FastAPI for the web framework
Status: ✅ Production-ready and deployed on Google Cloud Run
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。