LangChain MCP
A Multi-Server Control Plane system that enables natural language querying of job listings and employee feedback data through two specialized servers built with LangChain.
README
langchain_mcp
This repository demonstrates a minimal working MCP (Multi-Server Control Plane) setup using LangChain, with:
- A dummy jobs and employee API (FastAPI)
- Two MCP servers (jobs and employee feedback)
- A Python client that can query either server
Requirements
- Python 3.9+
- pip
- Node.js (optional, only if you want to build a frontend)
- An OpenAI API key (for GPT-4o)
Setup
1. Clone the repository
git clone https://github.com/nishant-Tiwari24/mcp.git
cd mcp
2. Create and activate a virtual environment
python3 -m venv .venv
source .venv/bin/activate
Note:
.venvis gitignored. You must create it yourself.
3. Install Python dependencies
pip install --upgrade pip
pip install -r requirements.txt
4. Set your OpenAI API key
Create a .env file in the project root (not tracked by git):
OPENAI_API_KEY=sk-...your-key-here...
Or export it in your shell before running the client:
export OPENAI_API_KEY=sk-...your-key-here...
Running the Demo
1. Start the dummy jobs/employee API
uvicorn mcp_server.jobs_api:app --port 8001 --host 127.0.0.1
2. Start the MCP server (in a new terminal)
- For jobs server:
python mcp_server/server.py - For employee server:
python mcp_server/server.py employee
Note: Only one MCP server can run at a time (always on port 8000).
3. Run the client (in a new terminal)
- Edit
langchain_mcp_client.pyand setSERVER = "jobs_server"orSERVER = "employee_server"at the top. - Before running the client, make sure your OpenAI API key is exported:
Or, if you have aexport OPENAI_API_KEY=sk-...your-key-here... python langchain_mcp_client.py.envfile, just run:python langchain_mcp_client.py
File Structure
langchain_mcp_client.py— Python client for querying MCP serversmcp_server/server.py— MCP server (jobs or employee feedback)mcp_server/jobs_api.py— Dummy FastAPI backend for jobs and employee datarequirements.txt— Python dependencies.gitignore— Excludes.venv,.env, and other environment files
Notes
- The
.venvdirectory and.envfile are not included in the repo. You must create them locally. - Only the minimal, required files are tracked in git.
- If you want to add a frontend, you can do so separately (not included in this repo).
Example Usage
- Jobs server:
- Query: "I am looking for an AI engineer in San Jose, CA with 4-5 years of experience leveraging models like GPT 401, Claude 3.5 or similar. Can you please show the similar jobs I can use to create a requisition?"
- Employee server:
- Query: "I am requesting a feedback summary for Kalyan P. The system will pull calendar year feedback, including Props, and create a summary for me to review, which can be ideally entered into Workday as an impact summary."
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。