LangGraph Agent MCP Server
Provides a standardized interface to interact with LangGraph agents through ChatGPT Enterprise, enabling conversational AI workflows with tools for agent invocation, streaming responses, and thread management.
README
MCP Server for LangGraph Agent
FastMCP-based Model Context Protocol server for ChatGPT Enterprise integration with LangGraph agent.
🎉 Quick Start
The fastest way to get started:
./start.sh
This will:
- Check if your LangGraph agent is running on port 2024
- Start the MCP server on port 8000
- Start the test UI on port 3005
- Open http://localhost:3005 in your browser
Overview
This MCP server provides a standardized interface to interact with a LangGraph agent deployed on port 2024, compliant with ChatGPT Enterprise integration requirements.
✨ Latest Updates
January 2025 - LangGraph CLI Integration
- ✅ Refactored to use LangGraph CLI API architecture
- ✅ Updated to
/runs,/runs/stream,/okendpoints - ✅ Changed message format to
{"type": "human"} - ✅ Added 3 new tools: health check, agent status, thread listing
- ✅ Fixed all async operations (no more blocking calls)
- ✅ Updated web UI to match new API structure
See REFACTORING_SUMMARY.md for detailed changes.
Features
- ✅ MCP Protocol 2025-06-18 compliant
- ✅ ChatGPT Enterprise compatible (SSE transport)
- ✅ OAuth 2.0 Authentication - Google OAuth and API key support
- ✅ FastMCP 2.13.0+ framework for production-ready deployment
- ✅ LangGraph CLI API integration
- ✅ 6 Tools: invoke_agent, stream_agent, check_system_health, check_agent_status, get_thread_state, list_threads
- ✅ 2 Resources: Agent health check and server info
- ✅ Prompts: Formatted agent queries
- ✅ Web Test UI: Interactive testing interface on port 3005
- ✅ Secure by Default: Optional authentication for production deployments
Installation
- Install dependencies:
pip install -r requirements.txt
- Configure environment (optional):
# Copy example configuration
cp .env.example .env
# Edit .env with your settings
# For development without auth:
OAUTH_ENABLED=false
# For production with auth:
OAUTH_ENABLED=true
GOOGLE_CLIENT_ID=your-client-id
GOOGLE_CLIENT_SECRET=your-client-secret
API_KEYS=your-api-key-1,your-api-key-2
- Generate credentials (if using OAuth):
python generate_credentials.py
See OAUTH_SETUP.md for detailed authentication setup.
Usage
Option 1: Quick Start Script (Recommended)
./start.sh
Option 2: Manual Start
Start MCP Server:
python src/agent_mcp/mcp_server.py
Start Test UI (optional):
cd web_ui && python server.py
Option 3: Using FastMCP CLI
python -m agent_mcp.mcp_server
Or using FastMCP CLI:
fastmcp run src/agent_mcp/mcp_server.py
For local development (STDIO):
fastmcp dev src/agent_mcp/mcp_server.py
Custom transport:
from agent_mcp.mcp_server import mcp
# HTTP transport
mcp.run(transport="http", host="0.0.0.0", port=8000, path="/mcp")
# SSE transport (for ChatGPT Enterprise)
mcp.run(transport="sse", host="0.0.0.0", port=8000)
Available Tools
1. invoke_agent
Execute a single invocation of the LangGraph agent.
{
"prompt": "What is the capital of France?",
"thread_id": "optional-thread-id"
}
2. stream_agent
Stream responses from the LangGraph agent.
{
"prompt": "Tell me a story",
"thread_id": "optional-thread-id"
}
3. get_agent_state
Retrieve the current state of a conversation thread.
{
"thread_id": "thread-id-to-query"
}
Authentication
The MCP server supports three authentication methods for production deployments:
1. OAuth 2.0 (Google or Okta)
Enable user-based authentication with your preferred identity provider:
Google OAuth:
# .env configuration
OAUTH_ENABLED=true
OAUTH_PROVIDER=google
GOOGLE_CLIENT_ID=your-client-id.apps.googleusercontent.com
GOOGLE_CLIENT_SECRET=your-client-secret
Okta OAuth:
# .env configuration
OAUTH_ENABLED=true
OAUTH_PROVIDER=okta
OKTA_DOMAIN=your-domain.okta.com
OKTA_CLIENT_ID=your-okta-client-id
OKTA_CLIENT_SECRET=your-okta-client-secret
OAuth Endpoints:
GET /auth/login- Initiate OAuth flowGET /auth/callback- OAuth callback handlerGET /auth/logout- LogoutGET /auth/status- Check authentication status
Quick Start Guides:
2. API Key Authentication
Use API keys for service-to-service authentication:
# Generate API keys
python generate_credentials.py
# Add to .env
API_KEYS=key1,key2,key3
Using API Keys:
# cURL
curl -H "X-API-Key: your-api-key" http://localhost:8000/sse
# Python
headers = {"X-API-Key": "your-api-key"}
Testing Authentication
# Test OAuth setup
python test_oauth.py
# Or test manually
curl http://localhost:8000/health # Public endpoint
curl -H "X-API-Key: your-key" http://localhost:8000/sse # Protected
For detailed setup instructions, see OAUTH_SETUP.md
Resources
agent://health- Agent health checkagent://info- Agent capabilities and metadata
Prompts
agent_query_prompt- Format queries for the agent
ChatGPT Enterprise Integration
This server is designed for ChatGPT Enterprise integration with:
- SSE Transport: Default transport for real-time streaming
- MCP Protocol 2025-06-18: Latest stable protocol version
- Proper Tool Schemas: Auto-generated from Python type hints
- Context Support: Logging and progress reporting
- Error Handling: Comprehensive error responses
ChatGPT Configuration
Add to your ChatGPT Enterprise MCP configuration:
{
"mcpServers": {
"langgraph-agent": {
"url": "http://your-server:8000/sse",
"transport": "sse"
}
}
}
Testing
Web UI Test Tool
We provide a beautiful web-based UI to test your MCP server and LangGraph agent:
# Start the test UI server
cd web_ui
python server.py
Then open http://localhost:3005 in your browser to:
- Test MCP server connectivity
- Test LangGraph agent connectivity
- Invoke agent with custom prompts
- Stream responses in real-time
- View activity logs
See web_ui/README.md for details.
Unit Tests
Run tests:
pytest tests/test_mcp_server.py -v
Run all tests:
pytest
Development
Project Structure
agent-mcp-py/
├── src/
│ └── agent_mcp/
│ ├── __init__.py
│ └── mcp_server.py # FastMCP server implementation
├── tests/
│ ├── test_mcp_server.py # MCP server tests
│ └── test_*.py # Other tests
├── requirements.txt # Production dependencies
├── requirements-dev.txt # Development dependencies
└── README.md
Adding New Tools
from fastmcp import Context
@mcp.tool()
async def my_tool(param: str, ctx: Context = None) -> dict:
"""Tool description for ChatGPT."""
if ctx:
await ctx.info(f"Processing: {param}")
# Your logic here
return {"result": "success"}
Adding Resources
@mcp.resource("custom://resource")
async def my_resource() -> str:
"""Resource description."""
return "Resource content"
Architecture
┌─────────────────┐
│ ChatGPT │
│ Enterprise │
└────────┬────────┘
│ MCP/SSE
│
┌────────▼────────┐
│ FastMCP │
│ Server │
│ (Port 8000) │
└────────┬────────┘
│ HTTP
│
┌────────▼────────┐
│ LangGraph │
│ Agent │
│ (Port 2024) │
└─────────────────┘
Production Deployment
With Authentication
from fastmcp.server.auth.providers.google import GoogleProvider
auth = GoogleProvider(
client_id="your-client-id",
client_secret="your-client-secret",
base_url="https://your-domain.com"
)
mcp = FastMCP(
"LangGraph Agent Server",
auth=auth
)
Docker Deployment
FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY src/ ./src/
CMD ["python", "-m", "agent_mcp.mcp_server"]
License
MIT
References
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。