Layout Detector MCP
Analyzes webpage screenshots to extract precise layout information by locating image assets and calculating spatial relationships, enabling AI assistants to accurately recreate layouts with proper semantic structure using computer vision.
README
Layout Detector MCP
An MCP (Model Context Protocol) server that analyzes webpage screenshots to extract layout information. Given a screenshot and image assets, it finds where each asset appears and calculates spatial relationships - enabling AI assistants to rebuild layouts with proper semantic structure.
Quick Start
Install from GitHub
pip install git+https://github.com/katlis/layout-detector-mcp.git
Or clone and install locally
git clone https://github.com/katlis/layout-detector-mcp.git
cd layout-detector-mcp
pip install .
Verify installation:
python3 -c "from layout_detector import server; print('OK')"
Configuration
Add to your Claude Code MCP settings (~/.claude.json or project .claude/settings.json):
{
"mcpServers": {
"layout-detector": {
"command": "layout-detector-mcp"
}
}
}
After adding the configuration, restart Claude Code and run /mcp to verify the server is connected.
The Problem
When an AI assistant looks at a screenshot, it can describe what it sees but cannot extract precise pixel measurements. This makes it difficult to accurately recreate layouts without human intervention or extensive trial-and-error.
The Solution
This MCP server uses computer vision (OpenCV template matching) to:
- Find known assets - Locate images within a screenshot with pixel-perfect coordinates
- Analyze relationships - Calculate angles, distances, and relative positions
- Detect patterns - Identify radial, grid, stacked, sidebar, or freeform layouts
- Enable semantic rebuilds - Provide structured data for modern CSS implementation
Tools
analyze_layout
Performs full layout analysis including pattern detection. This is the main tool you'll use.
Parameters:
screenshot_path(string, required): Absolute path to the screenshot imageasset_paths(array of strings, required): Absolute paths to asset images to findthreshold(number, optional): Match confidence 0-1, default 0.8
Returns:
{
"viewport": { "width": 900, "height": 650 },
"pattern": {
"type": "radial",
"confidence": 0.90
},
"radial": {
"center_x": 450,
"center_y": 250,
"center_element": "logo.gif",
"average_radius": 196
},
"elements": [
{
"asset_name": "planet1.gif",
"x": 628,
"y": 89,
"width": 62,
"height": 62,
"angle_degrees": 45.0,
"distance_from_center": 240
}
]
}
find_assets_in_screenshot
Locates image assets within a screenshot without layout analysis.
Parameters:
screenshot_path(string, required): Path to the screenshot imageasset_paths(array of strings, required): Paths to asset images to findthreshold(number, optional): Match confidence 0-1, default 0.8
Returns:
{
"found": 5,
"total_assets": 6,
"matches": [
{
"asset_path": "/path/to/logo.png",
"asset_name": "logo.png",
"x": 350,
"y": 200,
"width": 200,
"height": 100,
"center_x": 450,
"center_y": 250,
"confidence": 0.95
}
]
}
get_screenshot_info
Get basic screenshot dimensions.
Parameters:
screenshot_path(string, required): Path to the screenshot image
Returns:
{
"path": "/path/to/screenshot.png",
"width": 900,
"height": 650
}
Supported Layout Patterns
| Pattern | Description | Key Data Returned |
|---|---|---|
| Radial | Elements arranged around a center point | Center element, angles, distances |
| Grid | Elements in rows and columns | Row/column positions, gaps |
| Stacked | Vertical sections (header/main/footer) | Section names, Y positions |
| Sidebar | Two-column with narrow sidebar | Sidebar side, widths |
| Freeform | No clear pattern | Raw X/Y coordinates |
Example Usage
Once configured, Claude Code can use these tools:
User: Rebuild this webpage screenshot using the images in /assets
Claude: I'll analyze the layout first using the layout detector.
[Calls analyze_layout tool]
The analysis shows:
- Viewport: 900x650px
- Pattern: Radial (90% confidence)
- Center element: logo.gif at (450, 250)
- 8 elements arranged around the center
- Average distance from center: 196px
I'll implement this using CSS with the logo centered and
other elements positioned using absolute positioning...
Supported Image Formats
- PNG
- JPEG
- GIF (including animated - uses first frame)
- WebP
- BMP
Troubleshooting
"No module named 'cv2'"
OpenCV isn't installed. Run:
pip install opencv-python-headless
MCP server not showing in /mcp
- Check your settings file path is correct
- Ensure the command path is absolute (for source installs)
- Restart Claude Code after changing settings
- Run
python3 test_install.pyto verify the package works
Low confidence matches
Try lowering the threshold parameter (default 0.8). Values between 0.6-0.7 may help with compressed or scaled images.
Development
# Install in editable mode with dev dependencies
pip install -e ".[dev]"
# Run tests
pytest
# Test installation
python3 test_install.py
Requirements
- Python 3.11+
- OpenCV (opencv-python-headless)
- NumPy
- Pillow
- MCP SDK
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。