LearnMCP Server
Extracts and summarizes learning content from YouTube videos, PDFs, and web articles to provide context for project-based learning. It features automated background processing and integrates with Forest's HTA builder for informed task generation.
README
LearnMCP Server
A standalone MCP server that enhances Forest with learning content extraction and summarization capabilities.
Overview
LearnMCP extracts and summarizes learning content from various sources (YouTube videos, PDFs, web articles) and makes those summaries available to Forest's HTA builder for more informed task generation.
Features
- Content Extraction: YouTube videos (with transcripts), PDF documents, web articles
- Background Processing: Async content processing with queue management
- Smart Summarization: Content chunking and summarization with relevance scoring
- Forest Integration: Optional integration with Forest's HTA tree builder
- Standalone Operation: Can be enabled/disabled independently of Forest
Architecture
User → LearnMCP Tools → LearnService → BackgroundProcessor ⇄ Extractors ⇄ Summarizer → DataPersistence
↓
<DATA_DIR>/learn-content/
↓
Forest HTA Builder (optional)
Installation
-
Install Dependencies:
cd learn-mcp-server npm install -
Configure MCP: Add to your
mcp-config.json:{ "mcpServers": { "learn-mcp": { "command": "node", "args": ["server.js"], "cwd": "learn-mcp-server", "env": { "FOREST_DATA_DIR": "<same as Forest>" } } } } -
Start Server: The server starts automatically when Claude Desktop loads the MCP config.
Available Tools
add_learning_sources
Add learning sources (URLs) to a project for content extraction.
Parameters:
project_id(string): Project ID to add sources tourls(array): Array of URLs (YouTube, PDF, articles)
Example:
{
"project_id": "my_project",
"urls": [
"https://youtube.com/watch?v=example",
"https://example.com/document.pdf",
"https://blog.example.com/article"
]
}
process_learning_sources
Start background processing of pending learning sources.
Parameters:
project_id(string): Project ID to process sources for
list_learning_sources
List learning sources for a project, optionally filtered by status.
Parameters:
project_id(string): Project IDstatus(string, optional): Filter by status (pending, processing, completed, failed)
get_learning_summary
Get learning content summary for a project or specific source.
Parameters:
project_id(string): Project IDsource_id(string, optional): Specific source ID (if not provided, returns aggregated summary)token_limit(number, optional): Maximum tokens for aggregated summary (default: 2000)
delete_learning_sources
Delete learning sources and their summaries.
Parameters:
project_id(string): Project IDsource_ids(array): Array of source IDs to delete
get_processing_status
Get current processing status for learning sources.
Parameters:
project_id(string): Project ID
Supported Content Types
YouTube Videos
- Extracts video metadata (title, author, duration, etc.)
- Downloads transcripts when available
- Falls back to description if no transcript
PDF Documents
- Extracts text content from remote PDF URLs
- Preserves document metadata
- Handles various PDF formats
Web Articles
- Uses Mozilla Readability for clean content extraction
- Extracts metadata (title, author, publish date, etc.)
- Estimates reading time
Data Storage
LearnMCP stores data in <FOREST_DATA_DIR>/learn-content/:
learn-content/
├── <project_id>/
│ ├── sources.json # Source registry
│ └── summaries/
│ ├── <source_id>.json # Individual summaries
│ └── ...
Forest Integration
When both LearnMCP and Forest are active, Forest's HTA builder can optionally include learning content summaries in its task generation prompts. This happens automatically when:
- LearnMCP has processed learning sources for a project
- Forest builds an HTA tree for the same project
- Learning content summaries are injected into the HTA generation prompt
Workflow Examples
Basic Learning Content Workflow
-
Add Sources:
add_learning_sources(project_id="learn_python", urls=["https://youtube.com/watch?v=python_tutorial"]) -
Process Content:
process_learning_sources(project_id="learn_python") -
Check Status:
get_processing_status(project_id="learn_python") -
Get Summary:
get_learning_summary(project_id="learn_python")
Integrated with Forest
- Add and process learning sources in LearnMCP
- Build HTA tree in Forest - it will automatically include learning content context
- Generated tasks will be informed by the processed learning materials
Configuration
Environment Variables
FOREST_DATA_DIR: Shared data directory with Forest (required)LOG_LEVEL: Logging level (debug, info, warn, error)NODE_ENV: Environment (development, production)
Background Processor Settings
- Max Queue Size: 50 tasks
- Max Concurrent: 2 simultaneous extractions
- Processing Interval: 3 seconds
- Retry Attempts: 3 per source
- Timeout: 5 minutes per extraction
Error Handling
- Graceful Degradation: Failed extractions don't block other sources
- Retry Logic: Automatic retries with exponential backoff
- Comprehensive Logging: Detailed logs for debugging
- Status Tracking: Clear status indicators for each source
Development
Running Tests
npm test
Linting
npm run lint
npm run lint:fix
Debugging
Set LOG_LEVEL=debug for detailed logging.
Troubleshooting
Common Issues
- YouTube extraction fails: Check if video has transcripts enabled
- PDF extraction fails: Ensure PDF is publicly accessible
- Article extraction fails: Some sites block automated access
Logs
Check logs in <FOREST_DATA_DIR>/logs/:
learn-mcp.log: General operationslearn-mcp-errors.log: Error details
License
MIT License - Same as Forest MCP Server
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。