
Lindorm MCP Server
An example server that enables interaction with Alibaba Cloud's Lindorm multi-model NoSQL database, allowing applications to perform vector searches, full-text searches, and SQL operations through a unified interface.
README
Lindorm MCP Server
This repository is an example of how to create a MCP server for Lindorm, a multi-model NoSQL database.
Usage
Configuration on lindorm
To utilize this MCP server, follow these steps:
- Purchase the Lindorm wide-table engine, search-engine, vector-engine, and AI-engine on Alibaba Cloud.
- Deploy a text-embedding model by following the official instructions.
- Create your index (knowledgebase) and import your data using the deployed embedding model.
Environment Setup
- Clone this repository and navigate to the project directory.
- Create your environment file:
cp .env.example .env
- Edit the .env file with your specific configuration:
- LINDORM_INSTANCE_ID: Your Lindorm instance ID
- USING_VPC_NETWORK: Set to true if running on VPC network, otherwise false
- USERNAME: Your Lindorm account username
- PASSWORD: Your Lindorm account password
- TEXT_EMBEDDING_MODEL: The name of your deployed text-embedding model
- TABLE_DATABASE: The database for SQL operations Note: This configuration assumes all engines share the same username and password.
Running the MCP Server
You should install uv
.
Directly start the mcp server.
cd /path/to/alibabacloud-lindorm-mcp-server/
uv pip install .
uv run python -m src.lindorm_mcp_server.server
Visual Studio Code
- Install the Cline extension.
- Create the
.env
file under/path/to/alibabacloud-lindorm-mcp-server/
- Copy the MCP configuration from .vscode/mcp.json to cline_mcp_settings.json, replacing paths and variables as needed.
- Start the MCP server through the Cline extension.
Components
LindormVectorSearchClient
: Performs full-text and vector searches on the search and vector engines.LindormWideTableClient
: Executes SQL operations on Lindorm wide tables.
Available Tools
lindorm_retrieve_from_index
: Retrieve from an existing indexes(or knowledgebase) using both full-text search and vector search, and return the aggregated results- Parameters
- index_name: the index name, or known as knowledgebase name
- query: the query that you want to search in knowledgebase
- content_field: the text field that store the content text. You can get it from the index structure by lindorm_get_index_mappings tool
- vector_field: the vector field that store the vector index. You can get it from the index structure by lindorm_get_index_mappings tool
- top_k: the result number that you want to return
- Parameters
lindorm_get_index_fields
: Get the fields info of the indexes(or knowledgebase), especially get the vector stored field and content stored field.- Parameters:
- index_name: the index name, or known as knowledgebase name
- Parameters:
lindorm_list_all_index
: List all the indexes(or knowledgebase) you have.lindorm_execute_sql
: Execute SQL query on Lindorm database.- Parameters
- query: The SQL query to execute which start with select
- Parameters
lindorm_show_tables
: Get all tables in the Lindorm databaselindorm_describe_table
: Get tables schema in the Lindorm database- Parameters
- table_name: the table name
- Parameters
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。