LinkedIn Content Creation MCP Server

LinkedIn Content Creation MCP Server

Enables creation of optimized LinkedIn posts using a component-based design system with variants, themes, and composition patterns. Supports multiple post types (text, document, poll, video, carousel) with research-backed optimization for maximum engagement.

Category
访问服务器

README

chuk-mcp-linkedin

A comprehensive design system MCP server for creating LinkedIn posts with shadcn-inspired component architecture, CVA-style variants, and powerful theming.

Overview

chuk-mcp-linkedin brings design system principles to LinkedIn content creation. Create posts using composable components, variants, and themes - similar to modern frontend design systems like shadcn/ui but for social media content.

Features

  • Component-Based Architecture: 13+ specialized post types (text, document, poll, video, carousel, etc.)
  • Variant System: CVA-inspired variants with compound variant support
  • Theme System: 10 pre-built themes (thought leader, storyteller, community builder, etc.)
  • Composition Patterns: Build complex posts from subcomponents (hooks, body, CTA, hashtags)
  • Design Tokens: Research-backed tokens for engagement, formatting, and timing
  • 2025 Performance Data: Built-in optimization based on 1M+ post analysis
  • MCP Integration: Full Model Context Protocol support for LLM workflows

2025 LinkedIn Performance Insights

Based on analysis of 1M+ posts across 9K company pages:

Top Performing Formats

  1. Document Posts (PDF) - 45.85% engagement rate (HIGHEST)
  2. Poll Posts - 200%+ higher reach (MOST UNDERUSED)
  3. Video Posts - 1.4x engagement (rising fast)
  4. Image Posts - 2x more comments than text
  5. Carousel Posts - Declining (keep to 5-10 slides)

Key Insights

  • Polls achieve highest reach but are least used (opportunity!)
  • Document posts dominate engagement (carousel's successor)
  • Video usage up 69%, vertical format preferred
  • First 210 characters critical (before "see more")
  • First hour engagement determines algorithmic reach

Installation

pip install chuk-mcp-linkedin

Quick Start

Simple Text Post

from chuk_mcp_linkedin import LinkedInManager, ThemeManager

# Initialize
manager = LinkedInManager()
theme_mgr = ThemeManager()

# Create thought leadership post
theme = theme_mgr.get_theme("thought_leader")

post = manager.create_text_post(
    commentary="""80% of B2B decision makers prefer thought leadership content over ads.

Yet most companies just promote.

Here's what actually works:

→ Lead with insights, not products
→ Share frameworks, not features
→ Tell stories, not sales pitches
→ Build trust, not transactions

The algorithm rewards value.""",
    variant="insight",
    tone="professional",
    theme=theme
)

post.publish(visibility="PUBLIC")

Document Post (Highest Engagement)

from chuk_mcp_linkedin import DocumentPost, ChartComponents

# Create document post
doc = DocumentPost(
    commentary="Our Q4 results are in. Here's what we learned 📊",
    variant="report",
    theme=theme_mgr.get_theme("data_driven")
)

# Add slides
doc.add_slide(
    layout="title_slide",
    content={"title": "Q4 2024 Results", "subtitle": "Growth & Insights"}
)

# Add metrics with chart
metrics_chart = ChartComponents.metric_grid(
    title="Key Metrics",
    metrics=[
        {"label": "Revenue", "value": "$1.2M", "trend": "+12%"},
        {"label": "Customers", "value": "450", "trend": "+25%"},
    ]
)

doc.add_slide(
    layout="content_slide",
    content={"title": "Q4 Performance", "chart": metrics_chart}
)

doc.publish()

Poll Post (Highest Reach)

# Create poll (200%+ higher reach!)
poll = manager.create_poll_post(
    commentary="Quick question for my network:\n\nWhat's your biggest LinkedIn challenge in 2025?",
    question="Pick your top challenge:",
    options=[
        "Creating consistent content",
        "Growing engagement",
        "Converting leads",
        "Building community"
    ],
    duration_days=3,
    purpose="research",
    theme=theme_mgr.get_theme("community_builder")
)

poll.publish()

Composition Pattern (Advanced)

from chuk_mcp_linkedin import ComposablePost

# Build post using composition
post = (ComposablePost("text", theme=theme)
    .add_hook("stat", "95% of LinkedIn posts get zero comments")
    .add_body("""
Here's why (and how to fix it):

Most posts lack these 3 elements:

→ Strong hook (first 210 characters)
→ Clear value (what's in it for them)
→ Conversation starter (invite engagement)

Start treating posts like conversations, not broadcasts.
""", structure="listicle")
    .add_cta("curiosity", "What's your biggest LinkedIn frustration?")
    .add_hashtags(["LinkedInTips", "ContentStrategy"])
    .optimize_for_engagement()
    .compose())

manager.publish_text(post)

Component System

Post Types

  • TextPost - Simple text updates with variants (story, insight, question, listicle, hot_take)
  • DocumentPost - PDF carousels (highest engagement format in 2025)
  • PollPost - Polls for engagement (highest reach - 200%+ above average)
  • VideoPost - Video content (1.4x engagement)
  • CarouselPost - Multi-image storytelling (keep under 10 slides)
  • ImagePost - Single image posts
  • StoryPost - Personal narratives with emotional arc
  • ArticlePost - Link sharing with commentary
  • Plus: BehindTheScenesPost, HumorPost, AnnouncementPost, EventPost, ThoughtLeadershipPost

Subcomponents

  • Hook - Opening hooks (question, stat, story, controversy, list, curiosity)
  • Body - Main content with structures (linear, listicle, framework, story_arc, comparison)
  • CallToAction - Engagement drivers (direct, curiosity, action, share, soft)
  • Hashtags - Hashtag strategies (minimal, optimal, branded, trending)

Themes

10 pre-built themes for different LinkedIn personas:

  • thought_leader - Establish expertise and authority
  • personal_brand - Build authentic personal connection
  • technical_expert - Deep technical knowledge
  • community_builder - Foster conversation and connection
  • corporate_professional - Polished corporate communication
  • contrarian_voice - Challenge status quo, spark debate
  • storyteller - Narrative-driven emotional connection
  • data_driven - Let numbers tell the story
  • coach_mentor - Guide and support your audience
  • entertainer - Make LinkedIn fun and memorable

MCP Server Tools

Draft Management

  • linkedin_create - Create new draft
  • linkedin_list - List all drafts
  • linkedin_switch - Switch between drafts
  • linkedin_delete - Delete draft
  • linkedin_get_info - Get draft details

Content Creation

  • linkedin_text_post - Create text post
  • linkedin_document_post - Create document post
  • linkedin_poll_post - Create poll post
  • linkedin_video_post - Create video post
  • linkedin_carousel_post - Create carousel post

Composition

  • linkedin_add_hook - Add opening hook
  • linkedin_add_body - Add main content
  • linkedin_add_cta - Add call-to-action
  • linkedin_add_hashtags - Add hashtags

Enhancement

  • linkedin_optimize_length - Optimize text length
  • linkedin_suggest_emojis - Suggest emoji placement
  • linkedin_format_for_scannability - Add formatting for readability
  • linkedin_apply_theme - Apply theme to draft

Publishing

  • linkedin_publish - Publish to LinkedIn
  • linkedin_schedule - Schedule for later
  • linkedin_preview - Get preview
  • linkedin_export_draft - Export as JSON

Analytics

  • linkedin_get_post_stats - Get post analytics
  • linkedin_get_suggestions - Get content suggestions
  • linkedin_analyze_draft - Analyze draft performance potential

Design Tokens

Research-backed design tokens for optimal engagement:

Text Formatting

  • Character limits (3000 max, 210 before "see more")
  • Ideal lengths (micro: 50-150, short: 150-300, medium: 300-800, long: 800-1500, story: 1000-3000)
  • Line break styles (dense, readable, scannable, dramatic, extreme)

Emoji Usage

  • None, minimal (1%), moderate (5%), expressive (10%), heavy (15%)

Hashtags

  • Optimal count: 3-5 hashtags
  • Placement strategies: inline, mid, end, first_comment

Engagement Patterns

  • Hook types with power ratings (controversy: 0.95, stat: 0.9, story: 0.85)
  • CTA styles (direct, curiosity, action, share, soft)
  • First hour targets (minimum: 10, good: 50, viral: 100 engagements)

Timing

  • Best days: Tuesday, Wednesday, Thursday
  • Best hours: 7-9 AM, 12-2 PM, 5-6 PM
  • Optimal frequency: 4-5 posts per week

Architecture

src/chuk_mcp_linkedin/
├── components/        # Post type components
├── subcomponents/     # Composition subcomponents
├── tokens/           # Design tokens
├── themes/           # Theme system
├── layouts/          # Visual layouts
├── charts/           # Chart components
├── variants.py       # Variant system
├── composition.py    # Composition patterns
├── registry.py       # Component registry
├── manager.py        # Draft management
└── server.py         # MCP server

Development

# Install dev dependencies
pip install -e ".[dev]"

# Run tests
pytest

# Format code
black src tests

# Type checking
mypy src

License

MIT

Credits

Built by Christopher Hay

Based on 2025 LinkedIn performance data from analysis of 1M+ posts across 9K company pages.

Design system principles inspired by shadcn/ui and CVA.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选