LinkedIn Content Creation MCP Server
Enables creation of optimized LinkedIn posts using a component-based design system with variants, themes, and composition patterns. Supports multiple post types (text, document, poll, video, carousel) with research-backed optimization for maximum engagement.
README
chuk-mcp-linkedin
A comprehensive design system MCP server for creating LinkedIn posts with shadcn-inspired component architecture, CVA-style variants, and powerful theming.
Overview
chuk-mcp-linkedin brings design system principles to LinkedIn content creation. Create posts using composable components, variants, and themes - similar to modern frontend design systems like shadcn/ui but for social media content.
Features
- Component-Based Architecture: 13+ specialized post types (text, document, poll, video, carousel, etc.)
- Variant System: CVA-inspired variants with compound variant support
- Theme System: 10 pre-built themes (thought leader, storyteller, community builder, etc.)
- Composition Patterns: Build complex posts from subcomponents (hooks, body, CTA, hashtags)
- Design Tokens: Research-backed tokens for engagement, formatting, and timing
- 2025 Performance Data: Built-in optimization based on 1M+ post analysis
- MCP Integration: Full Model Context Protocol support for LLM workflows
2025 LinkedIn Performance Insights
Based on analysis of 1M+ posts across 9K company pages:
Top Performing Formats
- Document Posts (PDF) - 45.85% engagement rate (HIGHEST)
- Poll Posts - 200%+ higher reach (MOST UNDERUSED)
- Video Posts - 1.4x engagement (rising fast)
- Image Posts - 2x more comments than text
- Carousel Posts - Declining (keep to 5-10 slides)
Key Insights
- Polls achieve highest reach but are least used (opportunity!)
- Document posts dominate engagement (carousel's successor)
- Video usage up 69%, vertical format preferred
- First 210 characters critical (before "see more")
- First hour engagement determines algorithmic reach
Installation
pip install chuk-mcp-linkedin
Quick Start
Simple Text Post
from chuk_mcp_linkedin import LinkedInManager, ThemeManager
# Initialize
manager = LinkedInManager()
theme_mgr = ThemeManager()
# Create thought leadership post
theme = theme_mgr.get_theme("thought_leader")
post = manager.create_text_post(
commentary="""80% of B2B decision makers prefer thought leadership content over ads.
Yet most companies just promote.
Here's what actually works:
→ Lead with insights, not products
→ Share frameworks, not features
→ Tell stories, not sales pitches
→ Build trust, not transactions
The algorithm rewards value.""",
variant="insight",
tone="professional",
theme=theme
)
post.publish(visibility="PUBLIC")
Document Post (Highest Engagement)
from chuk_mcp_linkedin import DocumentPost, ChartComponents
# Create document post
doc = DocumentPost(
commentary="Our Q4 results are in. Here's what we learned 📊",
variant="report",
theme=theme_mgr.get_theme("data_driven")
)
# Add slides
doc.add_slide(
layout="title_slide",
content={"title": "Q4 2024 Results", "subtitle": "Growth & Insights"}
)
# Add metrics with chart
metrics_chart = ChartComponents.metric_grid(
title="Key Metrics",
metrics=[
{"label": "Revenue", "value": "$1.2M", "trend": "+12%"},
{"label": "Customers", "value": "450", "trend": "+25%"},
]
)
doc.add_slide(
layout="content_slide",
content={"title": "Q4 Performance", "chart": metrics_chart}
)
doc.publish()
Poll Post (Highest Reach)
# Create poll (200%+ higher reach!)
poll = manager.create_poll_post(
commentary="Quick question for my network:\n\nWhat's your biggest LinkedIn challenge in 2025?",
question="Pick your top challenge:",
options=[
"Creating consistent content",
"Growing engagement",
"Converting leads",
"Building community"
],
duration_days=3,
purpose="research",
theme=theme_mgr.get_theme("community_builder")
)
poll.publish()
Composition Pattern (Advanced)
from chuk_mcp_linkedin import ComposablePost
# Build post using composition
post = (ComposablePost("text", theme=theme)
.add_hook("stat", "95% of LinkedIn posts get zero comments")
.add_body("""
Here's why (and how to fix it):
Most posts lack these 3 elements:
→ Strong hook (first 210 characters)
→ Clear value (what's in it for them)
→ Conversation starter (invite engagement)
Start treating posts like conversations, not broadcasts.
""", structure="listicle")
.add_cta("curiosity", "What's your biggest LinkedIn frustration?")
.add_hashtags(["LinkedInTips", "ContentStrategy"])
.optimize_for_engagement()
.compose())
manager.publish_text(post)
Component System
Post Types
TextPost- Simple text updates with variants (story, insight, question, listicle, hot_take)DocumentPost- PDF carousels (highest engagement format in 2025)PollPost- Polls for engagement (highest reach - 200%+ above average)VideoPost- Video content (1.4x engagement)CarouselPost- Multi-image storytelling (keep under 10 slides)ImagePost- Single image postsStoryPost- Personal narratives with emotional arcArticlePost- Link sharing with commentary- Plus:
BehindTheScenesPost,HumorPost,AnnouncementPost,EventPost,ThoughtLeadershipPost
Subcomponents
Hook- Opening hooks (question, stat, story, controversy, list, curiosity)Body- Main content with structures (linear, listicle, framework, story_arc, comparison)CallToAction- Engagement drivers (direct, curiosity, action, share, soft)Hashtags- Hashtag strategies (minimal, optimal, branded, trending)
Themes
10 pre-built themes for different LinkedIn personas:
thought_leader- Establish expertise and authoritypersonal_brand- Build authentic personal connectiontechnical_expert- Deep technical knowledgecommunity_builder- Foster conversation and connectioncorporate_professional- Polished corporate communicationcontrarian_voice- Challenge status quo, spark debatestoryteller- Narrative-driven emotional connectiondata_driven- Let numbers tell the storycoach_mentor- Guide and support your audienceentertainer- Make LinkedIn fun and memorable
MCP Server Tools
Draft Management
linkedin_create- Create new draftlinkedin_list- List all draftslinkedin_switch- Switch between draftslinkedin_delete- Delete draftlinkedin_get_info- Get draft details
Content Creation
linkedin_text_post- Create text postlinkedin_document_post- Create document postlinkedin_poll_post- Create poll postlinkedin_video_post- Create video postlinkedin_carousel_post- Create carousel post
Composition
linkedin_add_hook- Add opening hooklinkedin_add_body- Add main contentlinkedin_add_cta- Add call-to-actionlinkedin_add_hashtags- Add hashtags
Enhancement
linkedin_optimize_length- Optimize text lengthlinkedin_suggest_emojis- Suggest emoji placementlinkedin_format_for_scannability- Add formatting for readabilitylinkedin_apply_theme- Apply theme to draft
Publishing
linkedin_publish- Publish to LinkedInlinkedin_schedule- Schedule for laterlinkedin_preview- Get previewlinkedin_export_draft- Export as JSON
Analytics
linkedin_get_post_stats- Get post analyticslinkedin_get_suggestions- Get content suggestionslinkedin_analyze_draft- Analyze draft performance potential
Design Tokens
Research-backed design tokens for optimal engagement:
Text Formatting
- Character limits (3000 max, 210 before "see more")
- Ideal lengths (micro: 50-150, short: 150-300, medium: 300-800, long: 800-1500, story: 1000-3000)
- Line break styles (dense, readable, scannable, dramatic, extreme)
Emoji Usage
- None, minimal (1%), moderate (5%), expressive (10%), heavy (15%)
Hashtags
- Optimal count: 3-5 hashtags
- Placement strategies: inline, mid, end, first_comment
Engagement Patterns
- Hook types with power ratings (controversy: 0.95, stat: 0.9, story: 0.85)
- CTA styles (direct, curiosity, action, share, soft)
- First hour targets (minimum: 10, good: 50, viral: 100 engagements)
Timing
- Best days: Tuesday, Wednesday, Thursday
- Best hours: 7-9 AM, 12-2 PM, 5-6 PM
- Optimal frequency: 4-5 posts per week
Architecture
src/chuk_mcp_linkedin/
├── components/ # Post type components
├── subcomponents/ # Composition subcomponents
├── tokens/ # Design tokens
├── themes/ # Theme system
├── layouts/ # Visual layouts
├── charts/ # Chart components
├── variants.py # Variant system
├── composition.py # Composition patterns
├── registry.py # Component registry
├── manager.py # Draft management
└── server.py # MCP server
Development
# Install dev dependencies
pip install -e ".[dev]"
# Run tests
pytest
# Format code
black src tests
# Type checking
mypy src
License
MIT
Credits
Built by Christopher Hay
Based on 2025 LinkedIn performance data from analysis of 1M+ posts across 9K company pages.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。