LinkedIn Lead Automation MCP Server

LinkedIn Lead Automation MCP Server

Enables automated LinkedIn lead generation and outreach through profile search, AI-powered lead scoring, personalized message generation, and automated follow-up sequences. Includes API key management with tier-based usage limits and PostgreSQL-backed tracking.

Category
访问服务器

README

LinkedIn Lead Automation MCP Server

Production-grade LinkedIn Lead Automation MCP (Model Context Protocol) Server with real-time search, analysis, scoring, messaging, and automated follow-up sequences.

Features

  • 🔍 Lead Discovery: Search LinkedIn profiles by keywords, location, and filters
  • 📊 Profile Analysis: Extract and analyze complete LinkedIn profile data
  • 🎯 AI-Powered Scoring: Intelligent lead scoring (0-100) based on profile data
  • 💬 Message Generation: Hyper-personalized message generation using AI
  • 📨 Automated Messaging: Send connection requests and direct messages
  • 🔄 Follow-up Sequences: Automated multi-stage follow-up campaigns
  • 🔐 API Key Management: Secure tier-based access control
  • 📈 Usage Tracking: Monitor API usage and enforce tier limits
  • 🗄️ PostgreSQL Support: Built with Neon PostgreSQL for production use

Architecture

  • MCP Server (src/index.js): Stdio-based MCP protocol server
  • HTTP API (src/http-server.js): RESTful HTTP API wrapper
  • Background Worker (src/worker.js): Automated follow-up sequence processor
  • Database (src/database-pg.js): PostgreSQL database layer
  • LinkedIn Automation (src/linkedin.js): Chrome DevTools Protocol integration
  • AI Service (src/ai.js): Anthropic Claude on Vertex AI (Google Cloud) integration for scoring and messaging

Prerequisites

  • Node.js 18+
  • PostgreSQL (Neon or any PostgreSQL 14+)
  • Chrome/Chromium browser with remote debugging enabled
  • Google Cloud SDK with gcloud CLI (for Vertex AI authentication)
  • GCP Project with Vertex AI API enabled

Installation

# Clone the repository
git clone https://github.com/vikram-agentic/linkedin-mcp.git
cd linkedin-mcp

# Install dependencies
npm install

# Create .env file
cp .env.example .env

Configuration

Create a .env file with the following variables:

# Database (Neon PostgreSQL)
DATABASE_URL=postgresql://user:password@host/database?sslmode=require

# Google Cloud / Vertex AI Configuration
GCP_PROJECT_ID=amgn-app
GCP_LOCATION=global
ANTHROPIC_MODEL_ID=claude-sonnet-4-5

# Server Configuration
PORT=3001

# Chrome DevTools Protocol (optional, for browser automation)
CDP_URL=http://localhost:9222

Database Setup

  1. Create a Neon PostgreSQL database (or use any PostgreSQL 14+)
  2. Run the schema in Neon SQL Editor:
# Use schema-neon.sql for Neon PostgreSQL
cat database/schema-neon.sql

Copy and paste the SQL from database/schema-neon.sql into Neon SQL Editor and execute it.

Usage

Start MCP Server (Stdio)

npm start

This starts the MCP server using stdio transport. Connect via MCP clients like Claude Desktop.

Start HTTP API Server

npm run http

This starts the HTTP API server on port 3001 (or PORT from .env).

Start Background Worker

npm run worker

This starts the automated follow-up sequence processor.

API Endpoints

Health Check

GET /health

Generate API Key

POST /api/generate-key
Body: { "tier": "starter" | "professional" | "agency" | "enterprise" }

Connect Browser

POST /api/browser/connect
Body: { "cdp_url": "http://localhost:9222" }

Setup LinkedIn Session

POST /api/session/setup
Body: { "api_key": "...", "li_at_cookie": "..." }

Search Leads

POST /api/leads/search
Body: { "api_key": "...", "keywords": "...", "location": "...", "limit": 25 }

Analyze Profile

POST /api/leads/analyze
Body: { "api_key": "...", "profile_url": "..." }

Score Lead

POST /api/leads/score
Body: { "api_key": "...", "profile_url": "..." }

Generate Message

POST /api/messages/generate
Body: {
  "api_key": "...",
  "profile_url": "...",
  "value_proposition": "...",
  "message_type": "connection" | "direct"
}

Send Message

POST /api/messages/send
Body: {
  "api_key": "...",
  "profile_url": "...",
  "message": "...",
  "is_connection_request": false
}

Create Follow-up Sequence

POST /api/sequences/create
Body: {
  "api_key": "...",
  "profile_url": "...",
  "initial_message": "...",
  "num_followups": 3
}

Get Leads

GET /api/leads?api_key=...

Get Usage Stats

GET /api/usage?api_key=...

MCP Tools

When using as an MCP server, the following tools are available:

  • connect_browser: Connect to Chrome via CDP
  • setup_session: Authenticate LinkedIn session
  • search_leads: Search for LinkedIn leads
  • analyze_profile: Extract profile data
  • score_lead: AI-powered lead scoring
  • generate_message: Generate personalized messages
  • send_message: Send messages to profiles
  • create_followup_sequence: Create automated sequences
  • generate_api_key: Generate API keys

Tier Limits

Tier Profiles Messages Sequences
Starter 500/month 200/month 2 active
Professional 2,000/month 1,000/month 10 active
Agency 10,000/month 5,000/month Unlimited
Enterprise Unlimited Unlimited Unlimited

Development

# Generate a test API key
npm run generate-key

# Run in development mode
npm start

Production Deployment

Deploy to Vercel

  1. Connect Repository to Vercel:

    # Install Vercel CLI
    npm i -g vercel
    
    # Login and deploy
    vercel login
    vercel --prod
    
  2. Set Environment Variables in Vercel Dashboard:

    • DATABASE_URL: Your Neon PostgreSQL connection string
    • GCP_PROJECT_ID: Your Google Cloud project ID
    • GCP_LOCATION: Location (default: global)
    • ANTHROPIC_MODEL_ID: Model ID (default: claude-sonnet-4-5)
  3. For GCP Authentication: Since Vercel doesn't support gcloud auth, you have two options:

    Option A: Use Service Account (Recommended)

    • Create a GCP Service Account with Vertex AI permissions
    • Download the JSON key file
    • Convert to base64 and set as GOOGLE_APPLICATION_CREDENTIALS env var
    • Update src/ai.js to use service account auth

    Option B: Use API Key (Alternative)

    • Generate a Vertex AI API key
    • Set as VERTEX_AI_API_KEY environment variable

Deploy with PM2 (Self-Hosted)

  1. Set up PostgreSQL database (recommended: Neon)
  2. Configure environment variables
  3. Run database schema
  4. Deploy using PM2:
pm2 start src/http-server.js --name linkedin-mcp-api
pm2 start src/worker.js --name linkedin-mcp-worker

Security Notes

  • ⚠️ Never commit .env files - they contain sensitive credentials
  • 🔐 API keys are hashed using bcrypt
  • 🔒 All database queries use parameterized statements
  • 🛡️ CORS is configured for production use

License

MIT License - see LICENSE file for details

Author

Agentic AI AMRO Ltd

Support

For issues and feature requests, please open an issue on GitHub.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选