LinkedIn MCP Server
A comprehensive Model Context Protocol server that enables AI assistants to interact with LinkedIn APIs for profile management, content creation, networking, messaging, and analytics.
README
LinkedIn MCP Server for Netlify
This is a comprehensive Model Context Protocol (MCP) server that provides complete LinkedIn integration for AI assistants. The server enables AI tools to interact with LinkedIn APIs for profile management, content creation, networking, messaging, and analytics.
This project includes both a serverless MCP server deployed on Netlify and a specialized FastAPI client for easy development and testing.
Features
LinkedIn MCP Server
- Profile Management: Get user profiles and company information
- Content Creation: Create and manage LinkedIn posts
- Network Management: Manage connections and send connection requests
- Messaging: Send and retrieve LinkedIn messages
- Company Intelligence: Search and analyze companies
- Analytics: Network analysis and insights
- Comprehensive Documentation: Built-in API guides and best practices
FastAPI Client
- Specialized LinkedIn API endpoints with intuitive REST interface
- Interactive API documentation (Swagger UI) at
/docs - Comprehensive testing suite with automated validation
- Development tools for local testing and debugging
- Professional error handling and authentication management
Getting Started
Quick Start
-
Clone and setup:
git clone <repository-url> cd llm_linkedin_mcp_deployment npm install -
Start LinkedIn MCP infrastructure:
cd mcp-client ./start_linkedin.shThis starts both:
- LinkedIn MCP server at
http://localhost:8888/mcp - FastAPI client at
http://localhost:8002
- LinkedIn MCP server at
-
Test the setup:
python demo.py --quick -
Get LinkedIn access token (for full functionality):
python oauth_helper.py
What You Get
After running the quick start, you'll have:
- ✅ LinkedIn MCP Server: Complete LinkedIn integration via MCP protocol
- ✅ FastAPI Client: REST API with Swagger docs at
/docs - ✅ 10 LinkedIn Tools: Profile, posts, companies, connections, messaging, analytics
- ✅ Documentation: Built-in guides and API references
- ✅ Testing Suite: Comprehensive validation and testing tools
Testing Your MCP Server
You can test your MCP server using either the MCP Inspector or directly with curl commands.
Using MCP Inspector
While the development server is running, you can test your MCP server using the MCP inspector:
npx @modelcontextprotocol/inspector npx mcp-remote@next http://localhost:8888/mcp
After deployment, you can test your deployed version:
npx @modelcontextprotocol/inspector npx mcp-remote@next https://your-site-name.netlify.app/mcp
Then open http://localhost:6274/ in your browser to interact with the MCP inspector.
Using curl
You can also test the MCP server directly using curl commands:
-
Initialize the MCP server:
curl -X POST http://localhost:8888/mcp \ -H "Content-Type: application/json" \ -d '{"jsonrpc":"2.0","method":"mcp/init","params":{},"id":"1"}' -
List available tools:
curl -X POST http://localhost:8888/mcp \ -H "Content-Type: application/json" \ -d '{"jsonrpc":"2.0","method":"mcp/listTools","params":{},"id":"2"}' -
Call a tool:
curl -X POST http://localhost:8888/mcp \ -H "Content-Type: application/json" \ -d '{"jsonrpc":"2.0","method":"mcp/callTool","params":{"name":"run-analysis-report","args":{"days":5}},"id":"3"}' -
List available resources:
curl -X POST http://localhost:8888/mcp \ -H "Content-Type: application/json" \ -d '{"jsonrpc":"2.0","method":"mcp/listResources","params":{},"id":"4"}' -
Read a resource:
curl -X POST http://localhost:8888/mcp \ -H "Content-Type: application/json" \ -d '{"jsonrpc":"2.0","method":"mcp/readResource","params":{"uri":"docs://interpreting-reports"},"id":"5"}'
Deployment
Deploying to Netlify
- Push this repository to GitHub
- Connect your repository to Netlify
- Configure the build settings:
- Build command: leave empty (no build required)
- Publish directory:
public
After deployment, your MCP server will be available at https://your-site-name.netlify.app/mcp
Using with Claude Desktop
To use this MCP server with Claude Desktop:
- Go to Claude Desktop settings
- Enable the MCP Server configuration
- Edit the configuration file:
{ "mcpServers": { "my-mcp": { "command": "npx", "args": [ "mcp-remote@next", "https://your-site-name.netlify.app/mcp" ] } } } - Restart Claude Desktop
Using the MCP Client
The MCP client provides a REST API interface for interacting with the MCP server. It's built with FastAPI and offers a clean, modern API with automatic documentation.
Starting the Client
cd mcp-client
pip install -r requirements.txt
uvicorn main:app --reload
This will start the FastAPI server at http://localhost:8001. You can access the API documentation at http://localhost:8001/docs.
Managing the MCP Server and FastAPI Client
The template includes several scripts to manage both the MCP server and FastAPI client:
cd mcp-client
./start.sh # Start both services in the background
./stop.sh # Stop both services gracefully
./check_status.sh # Check if services are running and view logs
./test_client.py # Test the FastAPI client endpoints
These scripts ensure processes keep running in the background even after you close your terminal, properly manage log files, and provide clear status information.
Testing the Client
You can test the client using the provided test script:
cd mcp-client
./test_client.py
This will run a series of tests against the API endpoints and display the results.
API Endpoints
GET /server- Get server informationGET /tools- List available toolsPOST /tools/call- Call a toolGET /resources- List available resourcesPOST /resources/read- Read a resource
For more details, refer to the MCP Client README.
Extending
Extending the MCP Server
You can extend this MCP server by adding more tools and resources to the getServer function in netlify/functions/mcp-server.js. Follow the existing examples and refer to the Model Context Protocol documentation for more information.
Extending the MCP Client
To add new endpoints to the MCP client, edit the main.py file in the mcp-client directory. The client is built with FastAPI, which makes it easy to add new routes and functionality.
Learn More
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。