LinkedIn Profile Analyzer MCP

LinkedIn Profile Analyzer MCP

Enables users to fetch, analyze, and manage LinkedIn posts data through tools that retrieve profiles, search posts by keywords, filter by date, and identify top-performing content based on engagement metrics.

Category
访问服务器

README

<a href="https://glama.ai/mcp/servers/5vbvsljk42"> <img width="380" height="200" src="https://glama.ai/mcp/servers/5vbvsljk42/badge" /> </a>

LinkedIn Profile Analyzer MCP

A powerful LinkedIn profile analyzer MCP (Machine Control Protocol) server that interacts with LinkedIn's API to fetch, analyze, and manage LinkedIn posts data. This MCP is specifically designed to work with Claude AI.

Features

  • Fetch and store LinkedIn posts for any public profile
  • Search through posts with keyword filtering
  • Get top performing posts based on engagement metrics
  • Filter posts by date range
  • Paginated access to stored posts
  • Easy integration with Claude AI

Prerequisites

  • Python 3.7+
  • RapidAPI key for LinkedIn Data API
  • Claude AI access

Getting Started

1. Get RapidAPI Key

  1. Visit LinkedIn Data API on RapidAPI
  2. Sign up or log in to RapidAPI
  3. Subscribe to the LinkedIn Data API
  4. Copy your RapidAPI key from the dashboard

2. Installation

  1. Clone the repository:
git clone https://github.com/rugvedp/linkedin-mcp.git
cd linkedin-mcp
  1. Install dependencies:
pip install -r requirements.txt
  1. Set up environment variables:
    • Create a .env file
    • Add your RapidAPI key:
RAPIDAPI_KEY=your_rapidapi_key_here

Project Structure

linkedin-mcp/
├── main.py              # Main MCP server implementation
├── mcp.json            # MCP configuration file
├── requirements.txt    # Python dependencies
├── .env               # Environment variables
└── README.md          # Documentation

MCP Configuration

The mcp.json file configures the LinkedIn MCP server:

{
  "mcpServers": {
    "LinkedIn Updated": {
      "command": "uv",
      "args": [
        "run",
        "--with",
        "mcp[cli]",
        "mcp",
        "run",
        "path/to/your/script.py"
      ]
    }
  }
}

Make sure to update the path in args to match your local file location.

Available Tools

1. fetch_and_save_linkedin_posts

Fetches LinkedIn posts for a given username and saves them locally.

fetch_and_save_linkedin_posts(username: str) -> str

2. get_saved_posts

Retrieves saved posts with pagination support.

get_saved_posts(start: int = 0, limit: int = 10) -> dict

3. search_posts

Searches posts for specific keywords.

search_posts(keyword: str) -> dict

4. get_top_posts

Returns top performing posts based on engagement metrics.

get_top_posts(metric: str = "Like Count", top_n: int = 5) -> dict

5. get_posts_by_date

Filters posts within a specified date range.

get_posts_by_date(start_date: str, end_date: str) -> dict

Using with Claude

  1. Initialize the MCP server in your conversation with Claude
  2. Use the available tools through natural language commands
  3. Claude will help you interact with LinkedIn data using these tools

API Integration

This project uses the following endpoint from the LinkedIn Data API:

  • GET /get-profile-posts: Fetches posts from a LinkedIn profile
    • Base URL: https://linkedin-data-api.p.rapidapi.com
    • Required Headers:
      • x-rapidapi-key: Your RapidAPI key
      • x-rapidapi-host: linkedin-data-api.p.rapidapi.com

Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Author

Rugved Patil

Repository

linkedin-mcp

Acknowledgments

  • RapidAPI for providing LinkedIn data access
  • Anthropic for Claude AI capabilities

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选