LinkedIn Scraper MCP Server

LinkedIn Scraper MCP Server

Enables extraction of comprehensive LinkedIn profile data including experience, education, skills, and contact information through browser automation. Requires manual LinkedIn credentials input and uses anti-detection measures for reliable scraping.

Category
访问服务器

README

LinkedIn Scraper MCP Server

A Model Context Protocol (MCP) server that provides LinkedIn profile scraping capabilities with manual credential input. This server allows you to extract comprehensive profile data including experience, education, skills, and contact information.

Features

  • Manual Credential Input: No need for environment variables - provide LinkedIn credentials directly in tool calls
  • Comprehensive Data Extraction: Scrapes name, headline, location, about section, experience, education, skills, and contact info
  • Multiple Transport Methods: Supports both HTTP (production) and STDIO (development) transports
  • Browser Automation: Uses Selenium WebDriver with Chrome for reliable scraping
  • Anti-Detection: Includes human-like delays and browser settings to avoid detection

Installation

  1. Install dependencies:
npm install
  1. Install Chrome browser (if not already installed):

    • The server uses Chrome WebDriver which will be automatically managed
    • Ensure Chrome browser is installed on your system
  2. Build the project:

npm run build

Usage

HTTP Transport (Recommended)

Start the server with HTTP transport:

npm start
# or
node dist/index.js

The server will start on http://localhost:8080 by default.

STDIO Transport (Development)

For local development with STDIO transport:

npm run start:stdio
# or
node dist/index.js --stdio

Command Line Options

  • --port <PORT>: Specify HTTP server port (default: 8080)
  • --stdio: Use STDIO transport instead of HTTP
  • --help: Show help message

MCP Client Configuration

Add this to your MCP client configuration:

{
  "mcpServers": {
    "linkedin-scraper": {
      "url": "http://localhost:8080/mcp"
    }
  }
}

Available Tools

scrape_linkedin_profile

Scrapes a LinkedIn profile and returns comprehensive profile data.

Parameters:

  • url (required): LinkedIn profile URL (e.g., "https://www.linkedin.com/in/username/")
  • email (required): LinkedIn account email for authentication
  • password (required): LinkedIn account password for authentication
  • headless (optional): Run browser in headless mode (default: false)

Example Usage:

{
  "tool": "scrape_linkedin_profile",
  "arguments": {
    "url": "https://www.linkedin.com/in/johndoe/",
    "email": "your-email@example.com",
    "password": "your-password",
    "headless": false
  }
}

Response Format:

{
  "success": true,
  "timestamp": "2024-01-01T12:00:00.000Z",
  "profile": {
    "url": "https://www.linkedin.com/in/johndoe/",
    "name": "John Doe",
    "headline": "Software Engineer at Tech Company",
    "location": "San Francisco, CA",
    "about": "Passionate software engineer...",
    "experience_count": 3,
    "experiences": [...],
    "education_count": 2,
    "education": [...],
    "skills_count": 15,
    "skills": [...],
    "websites": [...],
    "email": "john@example.com"
  }
}

Development

Project Structure

src/
├── index.ts            # Main entry point
├── cli.ts              # Command-line argument parsing
├── config.ts           # Configuration management
├── server.ts           # Server instance creation
├── client.ts           # LinkedIn scraper client
├── types.ts            # TypeScript type definitions
├── tools/
│   ├── index.ts        # Tool exports
│   └── linkedin.ts     # LinkedIn scraping tool
└── transport/
    ├── index.ts        # Transport exports
    ├── http.ts         # HTTP transport
    └── stdio.ts        # STDIO transport

Building

npm run build       # Build once
npm run watch       # Build and watch for changes

Running in Development

npm run dev         # Build and run HTTP transport
npm run dev:stdio   # Build and run STDIO transport

Security Considerations

  • Credential Handling: LinkedIn credentials are passed directly in tool calls and not stored
  • Rate Limiting: The scraper includes human-like delays to avoid being blocked
  • Browser Settings: Uses realistic browser settings to minimize detection
  • Session Management: Each scraping session is isolated and cleaned up properly

Troubleshooting

Common Issues

  1. Chrome Driver Issues: The server automatically manages Chrome WebDriver, but ensure Chrome browser is installed

  2. LinkedIn Authentication: If authentication fails:

    • Verify your LinkedIn credentials are correct
    • Check if your account has two-factor authentication enabled
    • Try logging in manually first to resolve any security challenges
  3. Scraping Failures: If scraping fails:

    • Try running with headless: false to see what's happening
    • Check if LinkedIn has updated their page structure
    • Ensure stable internet connection
  4. Port Conflicts: If port 8080 is in use:

    node dist/index.js --port 3000
    

Environment Variables

Optional environment variables:

  • PORT: HTTP server port (default: 8080)
  • NODE_ENV: Set to 'production' for production mode

License

This project is for educational and research purposes. Please respect LinkedIn's Terms of Service and use responsibly.

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Test thoroughly
  5. Submit a pull request

Disclaimer

This tool is for educational purposes only. Users are responsible for complying with LinkedIn's Terms of Service and applicable laws. The authors are not responsible for any misuse of this software.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选