Literature Manager MCP
An MCP server for organizing research papers, books, and digital sources by tracking reading progress and taking structured notes. It enables AI assistants to manage literature databases and link sources to specific concepts within a knowledge base.
README
📚 Literature Manager MCP
A beginner-friendly system for managing research papers, books, and other sources using AI assistants through the Model Context Protocol (MCP).
🎯 What is this?
This tool helps you:
- Organize research papers, books, websites, and videos
- Take notes on your sources with structured titles
- Track reading progress (unread, reading, completed, archived)
- Connect sources to concepts in your knowledge base
- Work with AI assistants like Claude to manage your literature
🚀 Quick Start
1. Prerequisites
- Python 3.8 or higher
🚀 Quick Start
1. Prerequisites
- Python 3.8 or higher
- Basic familiarity with command line
2. Installation
# Clone this repository
git clone https://github.com/Amruth22/literature-manager-mcp.git
cd literature-manager-mcp
# Install dependencies
pip install -r requirements.txt
# Create your database
python setup_database.py
3. Choose Your Usage Method
Option A: Direct Python Usage (Recommended)
# Set your database path
## 📚 How to Use
### Command Line Interface
```bash
# Add a research paper
python cli.py add-source "Attention Is All You Need" paper arxiv 1706.03762
# Add a book
python cli.py add-source "Deep Learning" book isbn 978-0262035613
# Add a note
python cli.py add-note "Attention Is All You Need" paper arxiv 1706.03762 \
"Key Insight" "Transformers eliminate recurrence"
# Update status
python cli.py update-status "Attention Is All You Need" paper arxiv 1706.03762 completed
# Link to entity
python cli.py link-entity "Attention Is All You Need" paper arxiv 1706.03762 \
"transformer architecture" introduces
# List sources
python cli.py list --type paper --status unread
# Search sources
python cli.py search "transformer"
# Show statistics
python cli.py stats
# Get help
python cli.py help
Direct Python Usage
from src.database import LiteratureDatabase
# Initialize database
db = LiteratureDatabase("literature.db")
# Add a source
source_id = db.add_source(
title="Attention Is All You Need",
source_type="paper",
identifier_type="arxiv",
identifier_value="1706.03762"
# Add a note
db.add_note(source_id, "Key Insight", "Transformers eliminate recurrence...")
# Update status
db.update_status(source_id, "completed")
# Link to entity
db.link_to_entity(source_id, "transformer architecture", "introduces")
# Get source details
source = db.get_source_by_id(source_id)
print(source)
Running Examples
# Run basic examples
python examples/basic_usage.py
# Run advanced examples
python examples/advanced_usage.py
# Run direct usage examples
python direct_usage.py
- completed: Finished reading
- archived: Saved for later reference
🔗 Relationship Types
When linking sources to concepts:
- discusses: Source talks about the concept
- introduces: Source first presents the concept
- extends: Source builds upon the concept
- evaluates: Source analyzes/critiques the concept
- applies: Source uses the concept practically
- critiques: Source criticizes the concept
🛠️ Available Commands
Basic Operations
add_source()- Add a new sourceadd_note()- Add notes to sourcesupdate_status()- Change reading statussearch_sources()- Find sources
Advanced Operations
link_to_entity()- Connect sources to conceptsget_entity_sources()- Find sources by conceptadd_identifier()- Add more IDs to existing sources
Database Operations
list_sources()- Show all sourcesget_source_details()- Get complete source infodatabase_stats()- Show database statistics
📁 Project Structure
literature-manager-mcp/
├── README.md # This file
├── requirements.txt # Python dependencies
├── setup_database.py # Database setup script
├── server.py # Main MCP server
├── src/
│ ├── __init__.py
│ ├── database.py # Database operations
│ ├── models.py # Data models
│ ├── tools.py # MCP tools
│ └── utils.py # Helper functions
├── examples/
│ ├── basic_usage.py # Simple examples
│ └── advanced_usage.py # Complex workflows
├── tests/
│ └── test_basic.py # Unit tests
└── docs/
├── installation.md # Detailed setup
├── examples.md # More examples
└── troubleshooting.md # Common issues
🤝 Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
📝 License
This project is licensed under the MIT License - see the LICENSE file for details.
🆘 Need Help?
- Check the troubleshooting guide
- Look at examples
- Open an issue
🙏 Acknowledgments
- Based on the original work by zongmin-yu
- Built with FastMCP
- Uses Model Context Protocol
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。