LiveKit RAG Assistant
Enables AI-powered semantic search and question-answering for LiveKit documentation using Pinecone vector search and real-time web search with Tavily, providing detailed responses with source attribution.
README
💬 LiveKit RAG Assistant v2.0
Enterprise-grade AI semantic search + real-time web integration for LiveKit documentation
🎯 Features
- Dual Search: Pinecone docs (3,000+ vectors) + Tavily real-time web
- Standard MCP: Async LangChain with Model Context Protocol
- Ultra-Fast: Groq LLM (llama-3.3-70b) sub-5s responses
- Premium UI: Glassmorphism design with 60+ animations
- Source Attribution: Full transparency on every answer
🚀 Quick Start
# Setup
conda create -n langmcp python=3.12
conda activate langmcp
pip install -r requirements.txt
# Configure .env
GROQ_API_KEY=your_key
TAVILY_API_KEY=your_key
PINECONE_API_KEY=your_key
PINECONE_INDEX_NAME=livekit-docs
# Terminal 1: Start MCP Server
python mcp_server_standard.py
# Terminal 2: Start UI
streamlit run app.py
App opens at http://localhost:8501
🏗️ Architecture
Streamlit (app.py) → MCP Server → Dual Search:
├─ Pinecone: Semantic search on embeddings (384-dim)
└─ Tavily: Real-time web results
↓
Groq LLM (2048 tokens, temp 0.3) → Response + Sources
🔧 Tech Stack
| Layer | Tech | Purpose |
|---|---|---|
| Frontend | Streamlit | Premium glassmorphism UI |
| Backend | MCP Standard | Async subprocess |
| LLM | Groq API | Ultra-fast inference |
| Embeddings | HuggingFace | all-MiniLM-L6-v2 (384-dim) |
| Vector DB | Pinecone | Serverless similarity search |
| Web Search | Tavily | Real-time internet results |
📚 Usage
- Choose mode: 📚 Docs or � Web
- Ask naturally: "How do I set up LiveKit?"
- Get instant answer with 📄 sources
- Copy messages or re-ask from history
⚡ Performance
- First query: ~15-20s (model load)
- Cached queries: 2-5s
- Search latency: <500ms
🛠️ Configuration
GROQ_API_KEY=gsk_***
TAVILY_API_KEY=tvly_***
PINECONE_API_KEY=***
PINECONE_INDEX_NAME=livekit-docs
🔄 Populate Docs
python ingest_docs_quick.py # Creates 3,000+ vector chunks
📊 Files
app.py- Streamlit UI with premium designmcp_server_standard.py- MCP server with toolsingest_docs_quick.py- Document ingestionrequirements.txt- Dependencies.env- API keys
🚨 Troubleshooting
| Issue | Solution |
|---|---|
| No results | Try web mode or different keywords |
| MCP not found | Start mcp_server_standard.py in Terminal 1 |
| Slow first response | Normal (15-20s) - model initializes once |
| API errors | Verify all keys in .env file |
� Features
✅ Real-time chat with 60+ animations ✅ Semantic + keyword hybrid search ✅ Copy-to-clipboard for messages ✅ Recent query suggestions ✅ System status dashboard ✅ Chat history persistence ✅ Query validation + error handling
Version: 2.0 | Status: ✅ Production Ready | Created: November 2025
👨💻 By @THENABILMAN | � Open Source | ❤️ For Developers
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。