Lizeur
Enables AI assistants to extract and read content from PDF documents using Mistral AI's OCR capabilities. Provides intelligent caching and returns clean markdown text for easy integration with AI workflows.
README
Lizeur - PDF Content Extraction MCP Server
Lizeur is a Model Context Protocol (MCP) server that enables AI assistants to extract and read content from PDF documents using Mistral AI's OCR capabilities. It provides a simple interface for converting PDF files to markdown text that can be easily consumed by AI models.
Features
- PDF OCR Processing: Uses Mistral AI's latest OCR model to extract text from PDF documents
- Intelligent Caching: Automatically caches processed documents to avoid re-processing
- Markdown Output: Returns clean markdown text for easy integration with AI workflows
- FastMCP Integration: Built with FastMCP for optimal performance and ease of use
Prerequisites
- Python 3.10
- UV package manager
- Mistral AI API key
Installation
From pypi
pip install lizeur
And add the following configuration to your mcp.json file:
Note: Lizeur will be installed in the python3.10 folder. If this folder is not in your system PATH, your IDE may not be able to detect the lizeur binary.
Solution: You can add the full path to the lizeur binary in the command field to ensure your IDE can locate it.
{
"mcpServers": {
"lizeur": {
"command": "lizeur",
"env": {
"MISTRAL_API_KEY": "your-mistral-api-key-here",
"CACHE_PATH": "your cache path",
}
}
}
}
Manual
1. Clone the Repository
git clone https://github.com/SilverBzH/lizeur
cd lizeur
2. Create and Activate Virtual Environment
# Create a virtual environment
uv venv --python 3.10
# Activate the virtual environment
# On macOS/Linux:
source .venv/bin/activate
# On Windows:
# .venv\Scripts\activate
3. Install Dependencies and Build
# Install dependencies
uv sync
# Build the package
uv build
4. Install System-Wide
# Install the package system-wide
uv pip install --system .
This will install the lizeur command globally on your system.
Usage
Once configured, the MCP server provides two tools that can be used by AI assistants:
Available Functions
read_pdf
- Function:
read_pdf - Parameter:
absolute_path(string) - The absolute path to the PDF file - Returns: Complete OCR response including all pages with markdown content, bounding boxes, and other OCR metadata
read_pdf_text
- Function:
read_pdf_text - Parameter:
absolute_path(string) - The absolute path to the PDF file - Returns: Markdown text content from all pages without the full OCR metadata (simpler for agents to process)
Example Usage in AI Assistant
The AI assistant can now use the tools like this:
What the OP command looks like for this specific controller, here is the doc /path/to/document.pdf
The MCP server will:
- Check if the document is already cached
- If not cached, upload the PDF to Mistral AI for OCR processing This will use your MISTRAL API key and cost money
- Extract the text and convert it to markdown
- Cache the result for future use
- Return the markdown content
Note: Use read_pdf_text when you only need the text content, or read_pdf when you need the complete OCR response with metadata. read_pdf can be confusion for some agent if the pdf file is big.
Development
Local Development Setup
# Install in development mode
uv pip install -e .
# Run the server directly
python main.py
Project Structure
main.py- Main server implementation with FastMCP integrationpyproject.toml- Project configuration and dependenciesuv.lock- Locked dependency versions
Dependencies
mcp[cli]>=1.12.4- Model Context Protocol implementationmistralai>=0.0.10- Mistral AI Python client
License
This project is licensed under the MIT License.
Support
For issues and questions, please refer to the project repository or contact the maintainers.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。