
Llama 4 Maverick MCP Server
Bridges Llama models with Claude Desktop through Ollama, enabling privacy-first local AI operations with 10+ built-in tools for file operations, web search, calculations, and custom model deployment. Features streaming support, hybrid intelligence workflows, and extensive Python ecosystem integration for research, development, and enterprise applications.
README
🦙 Llama 4 Maverick MCP Server (Python)
Author: Yobie Benjamin
Version: 0.9
Date: August 1, 2025
A Python implementation of the Model Context Protocol (MCP) server that bridges Llama models with Claude Desktop through Ollama. This pure Python solution offers clean architecture, high performance, and easy extensibility.
📚 Table of Contents
- What Would You Use This Llama MCP Server For?
- Why Python?
- Features
- System Requirements
- Quick Start
- Detailed Installation
- Configuration
- Available Tools
- Usage Examples
- Real-World Applications
- Development
- Performance Optimization
- Troubleshooting
- Contributing
🎯 What Would You Use This Llama MCP Server For?
The Revolution of Local AI + Claude Desktop
This Python MCP server creates a powerful bridge between Claude Desktop's sophisticated interface and your locally-hosted Llama models. Here's what makes this combination revolutionary:
1. Privacy-First AI Operations 🔒
The Challenge: Organizations handling sensitive data can't use cloud AI due to privacy concerns.
The Solution: This MCP server keeps everything local while providing enterprise-grade AI capabilities.
Real-World Applications:
- Healthcare: A hospital can analyze patient records using AI without violating HIPAA compliance
- Legal: Law firms can process confidential client documents with complete privacy
- Finance: Banks can analyze transaction data without exposing customer information
- Government: Agencies can process classified documents on air-gapped systems
Example Implementation:
# Process sensitive medical records locally
async def analyze_patient_data(patient_file):
# Data never leaves your server
content = await tool_manager.execute("read_file", {"path": patient_file})
# Use specialized medical model
analysis = await llama_service.complete(
prompt=f"Analyze patient data for risk factors: {content}",
model="medical-llama:latest", # Your HIPAA-compliant fine-tuned model
temperature=0.1 # Low temperature for medical accuracy
)
# Store results locally with encryption
await secure_storage.save(analysis, encrypted=True)
2. Custom Model Deployment 🎯
The Challenge: Generic models don't understand your domain-specific language and requirements.
The Solution: Deploy your own fine-tuned models through the MCP interface.
Real-World Applications:
- Research Labs: Use models trained on proprietary research data
- Enterprises: Deploy models fine-tuned on company documentation
- Educational Institutions: Use models trained on curriculum-specific content
- Industry-Specific: Legal, medical, financial, or technical domain models
Example Implementation:
# Switch between specialized models based on task
class ModelSelector:
def __init__(self):
self.models = {
"general": "llama3:latest",
"code": "codellama:latest",
"medical": "medical-llama:13b",
"legal": "legal-llama:7b",
"finance": "finance-llama:13b"
}
async def select_and_query(self, domain: str, prompt: str):
model = self.models.get(domain, "llama3:latest")
return await llama_service.complete(
prompt=prompt,
model=model,
temperature=0.3 if domain in ["medical", "legal"] else 0.7
)
3. Hybrid Intelligence Systems 🔄
The Challenge: No single AI model excels at everything.
The Solution: Combine Claude's reasoning with Llama's generation capabilities.
Real-World Applications:
- Software Development: Claude plans architecture, Llama generates implementation
- Content Creation: Claude creates outlines, Llama writes detailed content
- Data Analysis: Claude interprets results, Llama generates reports
- Research: Claude formulates hypotheses, Llama explores implications
Example Implementation:
# Hybrid workflow combining Claude and Llama
class HybridAI:
async def complex_task(self, requirement: str):
# Step 1: Use Claude for high-level planning
plan = await claude.create_plan(requirement)
# Step 2: Use local Llama for detailed implementation
implementation = await llama_service.complete(
prompt=f"Implement this plan: {plan}",
model="codellama:34b",
max_tokens=4096
)
# Step 3: Use Claude for review and refinement
refined = await claude.review_and_refine(implementation)
return refined
4. Offline and Edge Computing 🌐
The Challenge: Many environments lack reliable internet or prohibit cloud connections.
The Solution: Full AI capabilities without any internet requirement.
Real-World Applications:
- Remote Operations: Oil rigs, ships, remote research stations
- Industrial IoT: Factory floors with real-time requirements
- Field Work: Geological surveys, wildlife research, disaster response
- Secure Facilities: Military bases, research labs, government buildings
Example Implementation:
# Edge deployment for industrial quality control
class EdgeQualityControl:
def __init__(self):
self.config = Config(
llama_model_name="quality-control:latest",
enable_streaming=True,
max_context_length=8192 # Optimized for edge devices
)
async def inspect_product(self, sensor_data: dict):
# Process sensor data locally
analysis = await llama_service.complete(
prompt=f"Analyze sensor readings for defects: {sensor_data}",
temperature=0.1, # Consistent results needed
max_tokens=256 # Quick response for real-time processing
)
# Trigger local actions based on analysis
if "defect" in analysis.lower():
await self.trigger_alert(analysis)
return analysis
5. Experimentation and Research 🧪
The Challenge: Researchers need reproducible results and full control over model behavior.
The Solution: Complete transparency and control over every aspect of the AI pipeline.
Real-World Applications:
- Academic Research: Reproducible experiments for papers
- Model Comparison: A/B testing different models and parameters
- Behavior Analysis: Understanding how models respond to different inputs
- Prompt Engineering: Developing optimal prompts for specific tasks
Example Implementation:
# Research experiment framework
class ExperimentRunner:
async def run_experiment(self, hypothesis: str, test_cases: list):
results = []
# Test multiple models
for model in ["llama3:7b", "llama3:13b", "llama3:70b"]:
# Test multiple parameters
for temp in [0.1, 0.5, 0.9, 1.5]:
model_results = []
for test in test_cases:
response = await llama_service.complete(
prompt=test,
model=model,
temperature=temp,
seed=42 # Reproducible results
)
model_results.append({
"input": test,
"output": response,
"model": model,
"temperature": temp,
"timestamp": datetime.now()
})
results.append(model_results)
# Analyze and save results
analysis = self.analyze_results(results)
await self.save_experiment(hypothesis, results, analysis)
return analysis
6. Cost-Effective Scaling 💰
The Challenge: API costs can become prohibitive for high-volume applications.
The Solution: One-time hardware investment for unlimited usage.
Real-World Applications:
- Startups: Prototype without burning through funding
- Education: Provide AI access to all students without budget concerns
- Non-profits: Leverage AI without ongoing costs
- High-volume Processing: Batch jobs, data analysis, content generation
Cost Analysis Example:
# Cost comparison calculator
class CostAnalyzer:
def calculate_savings(self, monthly_tokens: int):
# API costs (approximate)
api_cost_per_million = 15.00 # USD
monthly_api_cost = (monthly_tokens / 1_000_000) * api_cost_per_million
# Local costs (one-time hardware)
hardware_cost = 2000 # Good GPU setup
electricity_monthly = 50 # Approximate
# Calculate break-even
months_to_break_even = hardware_cost / (monthly_api_cost - electricity_monthly)
return {
"monthly_api_cost": monthly_api_cost,
"monthly_local_cost": electricity_monthly,
"monthly_savings": monthly_api_cost - electricity_monthly,
"break_even_months": months_to_break_even,
"first_year_savings": (monthly_api_cost * 12) - (hardware_cost + electricity_monthly * 12)
}
7. Real-Time Processing ⚡
The Challenge: Network latency makes cloud AI unsuitable for real-time applications.
The Solution: Sub-second response times with local processing.
Real-World Applications:
- Trading Systems: Analyze market data in milliseconds
- Gaming: Real-time NPC dialogue and behavior
- Robotics: Immediate response to sensor inputs
- Live Translation: Instant language translation
Example Implementation:
# Real-time stream processing
class StreamProcessor:
def __init__(self):
self.buffer = []
self.processing = False
async def process_stream(self, data_stream):
async for chunk in data_stream:
self.buffer.append(chunk)
if not self.processing and len(self.buffer) > 0:
self.processing = True
# Process immediately without network delay
result = await llama_service.complete(
prompt=f"Analyze: {self.buffer[-1]}",
model="tinyllama:latest", # Fast model for real-time
max_tokens=50,
stream=True
)
async for token in result:
yield token # Stream results immediately
self.processing = False
8. Custom Tool Integration 🛠️
The Challenge: Generic AI can't interact with your specific systems and databases.
The Solution: Build custom tools that integrate with your infrastructure.
Real-World Applications:
- DevOps: AI that can manage your specific infrastructure
- Database Management: Query and manage your databases via natural language
- System Administration: Automate complex administrative tasks
- Business Intelligence: Connect to your BI tools and data warehouses
Example Implementation:
# Custom tool for database operations
class DatabaseTool(BaseTool):
@property
def name(self) -> str:
return "company_database"
@property
def description(self) -> str:
return "Query and manage company database"
async def execute(self, query: str, operation: str = "select") -> ToolResult:
# Connect to your specific database
async with get_company_db() as db:
if operation == "select":
results = await db.fetch(query)
return ToolResult(success=True, data=results)
elif operation == "analyze":
# Use Llama to analyze query results
analysis = await llama_service.complete(
prompt=f"Analyze this data: {results}",
temperature=0.3
)
return ToolResult(success=True, data=analysis)
9. Compliance and Governance 📋
The Challenge: Regulatory requirements demand complete control and audit trails.
The Solution: Full transparency and logging of all AI operations.
Real-World Applications:
- Healthcare: HIPAA compliance with audit trails
- Finance: SOX compliance with transaction monitoring
- Legal: Attorney-client privilege protection
- Government: Security clearance requirements
Example Implementation:
# Compliance-aware AI system
class ComplianceAI:
def __init__(self):
self.audit_logger = AuditLogger()
self.encryption = EncryptionService()
async def process_regulated_data(self, data: str, user: str, purpose: str):
# Log access for audit
audit_id = await self.audit_logger.log_access(
user=user,
data_type="regulated",
purpose=purpose,
timestamp=datetime.now()
)
# Encrypt data in transit
encrypted = self.encryption.encrypt(data)
# Process with local model (data never leaves premises)
result = await llama_service.complete(
prompt=f"Process: {encrypted}",
model="compliance-llama:latest"
)
# Log completion
await self.audit_logger.log_completion(
audit_id=audit_id,
success=True,
result_hash=hashlib.sha256(result.encode()).hexdigest()
)
return self.encryption.encrypt(result)
10. Educational Environments 🎓
The Challenge: Educational institutions need affordable AI access for all students.
The Solution: Single deployment serves unlimited students without per-use costs.
Real-World Applications:
- Computer Science: Teaching AI/ML concepts hands-on
- Research Projects: Student research without budget constraints
- Writing Centers: AI-assisted writing for all students
- Language Learning: Personalized language practice
Example Implementation:
# Educational AI assistant
class EducationalAssistant:
def __init__(self):
self.student_profiles = {}
self.learning_analytics = LearningAnalytics()
async def personalized_tutoring(self, student_id: str, subject: str, question: str):
# Get student's learning profile
profile = self.student_profiles.get(student_id, self.create_profile(student_id))
# Adjust response based on student level
response = await llama_service.complete(
prompt=f"""
Student Level: {profile['level']}
Subject: {subject}
Question: {question}
Provide an explanation appropriate for this student's level.
""",
temperature=0.7,
model="education-llama:latest"
)
# Track learning progress
await self.learning_analytics.record_interaction(
student_id=student_id,
subject=subject,
question=question,
response=response
)
return response
🐍 Why Python?
Advantages Over TypeScript/Node.js
Aspect | Python Advantage | Use Case |
---|---|---|
Scientific Computing | NumPy, SciPy, Pandas integration | Data analysis, research |
ML Ecosystem | Direct integration with PyTorch, TensorFlow | Model experimentation |
Simplicity | Cleaner async/await syntax | Faster development |
Libraries | Vast ecosystem of AI/ML tools | Extended functionality |
Debugging | Better error messages and debugging tools | Easier troubleshooting |
Performance | uvloop for high-performance async | Better concurrency |
Type Safety | Type hints + Pydantic validation | Runtime validation |
✨ Features
Core Capabilities
- 🚀 High Performance: Async/await with uvloop support
- 🛠️ 10+ Built-in Tools: Web search, file ops, calculations, and more
- 📝 Prompt Templates: Pre-defined prompts for common tasks
- 📁 Resource Management: Access templates and documentation
- 🔄 Streaming Support: Real-time token generation
- 🔧 Highly Configurable: Environment-based configuration
- 📊 Structured Logging: Comprehensive debugging support
- 🧪 Fully Tested: Pytest test suite included
Python-Specific Features
- 🐼 Data Science Integration: Works with Pandas, NumPy
- 🤖 ML Framework Compatible: Integrate with PyTorch, TensorFlow
- 📈 Analytics Built-in: Performance metrics and monitoring
- 🔌 Plugin System: Easy to extend with Python packages
- 🎯 Type Safety: Pydantic models for validation
- 🔒 Security: Built-in sanitization and validation
💻 System Requirements
Minimum Requirements
Component | Minimum | Recommended | Optimal |
---|---|---|---|
Python | 3.9+ | 3.11+ | Latest |
CPU | 4 cores | 8 cores | 16+ cores |
RAM | 8GB | 16GB | 32GB+ |
Storage | 10GB SSD | 50GB SSD | 100GB NVMe |
OS | Linux/macOS/Windows | Ubuntu 22.04 | Latest Linux |
Model Requirements
Model | Parameters | RAM | Use Case |
---|---|---|---|
tinyllama |
1.1B | 2GB | Testing, quick responses |
llama3:7b |
7B | 8GB | General purpose |
llama3:13b |
13B | 16GB | Advanced tasks |
llama3:70b |
70B | 48GB | Professional use |
codellama |
7-34B | 8-32GB | Code generation |
🚀 Quick Start
# Clone the repository
git clone https://github.com/yobieben/llama4-maverick-mcp-python.git
cd llama4-maverick-mcp-python
# Run setup (handles everything)
python setup.py
# Start the server
python -m llama4_maverick_mcp.server
That's it! The server is now running and ready to connect to Claude Desktop.
📦 Detailed Installation
Step 1: Python Setup
# Check Python version
python --version # Should be 3.9+
# Create virtual environment (recommended)
python -m venv venv
# Activate virtual environment
# Linux/macOS:
source venv/bin/activate
# Windows:
venv\Scripts\activate
Step 2: Install Dependencies
# Install the package in development mode
pip install -e .
# For development with testing tools
pip install -e .[dev]
Step 3: Install Ollama
# macOS
brew install ollama
# Linux
curl -fsSL https://ollama.com/install.sh | sh
# Windows
# Download from https://ollama.com/download/windows
Step 4: Configure Environment
# Copy example configuration
cp .env.example .env
# Edit configuration
nano .env # or your preferred editor
Step 5: Download Models
# Start Ollama service
ollama serve
# In another terminal, pull models
ollama pull llama3:latest
ollama pull codellama:latest
ollama pull tinyllama:latest
Step 6: Configure Claude Desktop
Add to Claude Desktop configuration:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
{
"mcpServers": {
"llama4-python": {
"command": "python",
"args": ["-m", "llama4_maverick_mcp.server"],
"cwd": "/path/to/llama4-maverick-mcp-python",
"env": {
"PYTHONPATH": "/path/to/llama4-maverick-mcp-python/src",
"LLAMA_MODEL_NAME": "llama3:latest"
}
}
}
}
⚙️ Configuration
Environment Variables
Create a .env
file:
# Ollama Configuration
LLAMA_API_URL=http://localhost:11434
LLAMA_MODEL_NAME=llama3:latest
LLAMA_API_KEY= # Optional
# Server Configuration
MCP_LOG_LEVEL=INFO
MCP_SERVER_HOST=localhost
MCP_SERVER_PORT=3000
# Features
ENABLE_STREAMING=true
ENABLE_FUNCTION_CALLING=true
ENABLE_VISION=false
ENABLE_CODE_EXECUTION=false # Security risk
ENABLE_WEB_SEARCH=true
# Model Parameters
TEMPERATURE=0.7 # 0.0-2.0
TOP_P=0.9 # 0.0-1.0
TOP_K=40 # 1-100
REPEAT_PENALTY=1.1
SEED=42 # For reproducibility
# File System
FILE_SYSTEM_BASE_PATH=/safe/path
ALLOW_FILE_WRITES=true
# Performance
MAX_CONTEXT_LENGTH=128000
MAX_CONCURRENT_REQUESTS=10
REQUEST_TIMEOUT_MS=30000
CACHE_TTL=3600
CACHE_MAX_SIZE=1000
# Debug
DEBUG=false
VERBOSE_LOGGING=false
Configuration Classes
from llama4_maverick_mcp.config import Config
# Create custom configuration
config = Config(
llama_model_name="codellama:latest",
temperature=0.3,
enable_code_execution=True
)
# Access configuration
print(config.llama_model_name)
print(config.get_model_params())
🛠️ Available Tools
Built-in Tools
Tool | Description | Example |
---|---|---|
calculator |
Mathematical calculations | 2 + 2 , sqrt(16) |
datetime |
Date/time operations | Current time, date math |
json_tool |
JSON manipulation | Parse, extract, transform |
web_search |
Search the web | Query for information |
file_read |
Read files | Access local files |
file_write |
Write files | Save data locally |
list_files |
List directories | Browse file system |
code_executor |
Run code | Execute Python/JS/Bash |
http_request |
HTTP calls | API interactions |
Creating Custom Tools
# src/llama4_maverick_mcp/tools/custom/my_tool.py
from pydantic import BaseModel, Field
from ..base import BaseTool, ToolResult
class MyToolParams(BaseModel):
"""Parameters for my custom tool."""
input_text: str = Field(..., description="Text to process")
option: str = Field(default="default", description="Processing option")
class MyCustomTool(BaseTool):
@property
def name(self) -> str:
return "my_custom_tool"
@property
def description(self) -> str:
return "Performs custom processing on text"
@property
def parameters(self) -> type[BaseModel]:
return MyToolParams
async def execute(self, input_text: str, option: str = "default") -> ToolResult:
# Your custom logic here
result = f"Processed: {input_text} with option: {option}"
return ToolResult(
success=True,
data={"result": result, "length": len(input_text)}
)
📊 Usage Examples
Basic Usage
import asyncio
from llama4_maverick_mcp import MCPServer, Config
async def main():
# Create server with custom config
config = Config(
llama_model_name="llama3:latest",
temperature=0.7
)
server = MCPServer(config)
# Run the server
await server.run()
if __name__ == "__main__":
asyncio.run(main())
Direct API Usage
from llama4_maverick_mcp import LlamaService, Config
async def generate_text():
config = Config()
llama = LlamaService(config)
await llama.initialize()
# Simple completion
result = await llama.complete(
prompt="Explain quantum computing",
temperature=0.5,
max_tokens=200
)
print(result)
# Chat completion
messages = [
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": "What is Python?"}
]
response = await llama.complete_chat(messages)
print(response)
Tool Execution
from llama4_maverick_mcp.tools import ToolManager
async def use_tools():
manager = ToolManager(Config())
await manager.initialize()
# Execute calculator
result = await manager.execute_tool(
"calculator",
{"expression": "factorial(5) + sqrt(16)"}
)
print(result)
# Read file
content = await manager.execute_tool(
"file_read",
{"path": "config.json"}
)
print(content)
🌟 Real-World Applications
1. Document Analysis Pipeline
class DocumentAnalyzer:
def __init__(self):
self.config = Config(temperature=0.3)
self.llama = LlamaService(self.config)
self.tools = ToolManager(self.config)
async def analyze_documents(self, directory: str):
# List all documents
files = await self.tools.execute_tool(
"list_files",
{"path": directory, "recursive": True}
)
results = []
for file in files['data']['files']:
if file.endswith(('.txt', '.md', '.pdf')):
# Read document
content = await self.tools.execute_tool(
"file_read",
{"path": file}
)
# Analyze with Llama
analysis = await self.llama.complete(
prompt=f"Summarize and extract key points: {content['data']}",
max_tokens=500
)
results.append({
"file": file,
"analysis": analysis
})
return results
2. Code Review System
class CodeReviewer:
async def review_code(self, code: str, language: str = "python"):
prompt = f"""
Review this {language} code for:
1. Security vulnerabilities
2. Performance issues
3. Best practices
4. Potential bugs
Code:
```{language}
{code}
```
Provide specific suggestions for improvement.
"""
review = await llama_service.complete(
prompt=prompt,
model="codellama:latest",
temperature=0.3
)
return self.parse_review(review)
3. Research Assistant
class ResearchAssistant:
async def research_topic(self, topic: str):
# Search for information
search_results = await self.tools.execute_tool(
"web_search",
{"query": topic, "max_results": 10}
)
# Analyze sources
analysis = await self.llama.complete(
prompt=f"Analyze these sources about {topic}: {search_results}",
temperature=0.5
)
# Generate report
report = await self.llama.complete(
prompt=f"Write a comprehensive report on {topic} based on: {analysis}",
temperature=0.7,
max_tokens=2000
)
# Save report
await self.tools.execute_tool(
"file_write",
{
"path": f"research_{topic}_{datetime.now().strftime('%Y%m%d')}.md",
"content": report
}
)
return report
🧪 Development
Running Tests
# Run all tests
pytest
# Run with coverage
pytest --cov=llama4_maverick_mcp
# Run specific test
pytest tests/test_llama_service.py
# Run with verbose output
pytest -v
Code Quality
# Format code with Black
black src/
# Lint with Ruff
ruff check src/
# Type checking with mypy
mypy src/
# All quality checks
make quality
Creating Tests
# tests/test_my_tool.py
import pytest
from llama4_maverick_mcp.tools.custom.my_tool import MyCustomTool
@pytest.mark.asyncio
async def test_my_custom_tool():
tool = MyCustomTool()
result = await tool.execute(
input_text="Hello, world!",
option="uppercase"
)
assert result.success
assert "Hello, world!" in result.data["result"]
assert result.data["length"] == 13
🚀 Performance Optimization
1. Use uvloop (Linux/macOS)
# Automatically enabled if available
# 2-4x performance improvement for async operations
pip install uvloop
2. Model Optimization
# Use smaller models for simple tasks
config = Config(
llama_model_name="tinyllama:latest", # 1.1B params, very fast
max_context_length=4096, # Reduce context for speed
temperature=0.1 # Lower temperature for consistency
)
3. Caching Strategy
from functools import lru_cache
from cachetools import TTLCache
class CachedLlamaService(LlamaService):
def __init__(self, config):
super().__init__(config)
self.cache = TTLCache(maxsize=1000, ttl=3600)
async def complete(self, prompt: str, **kwargs):
cache_key = f"{prompt}:{kwargs}"
if cache_key in self.cache:
return self.cache[cache_key]
result = await super().complete(prompt, **kwargs)
self.cache[cache_key] = result
return result
4. Batch Processing
import asyncio
async def batch_process(prompts: list):
# Process multiple prompts concurrently
tasks = [
llama_service.complete(prompt, temperature=0.5)
for prompt in prompts
]
# Limit concurrency to avoid overwhelming the system
semaphore = asyncio.Semaphore(5)
async def limited_task(task):
async with semaphore:
return await task
results = await asyncio.gather(*[limited_task(t) for t in tasks])
return results
🔧 Troubleshooting
Common Issues
Issue | Solution |
---|---|
ImportError | Check Python path: export PYTHONPATH=$PYTHONPATH:$(pwd)/src |
Ollama not found | Install: curl -fsSL https://ollama.com/install.sh | sh |
Model not available | Pull model: ollama pull llama3:latest |
Permission denied | Check file permissions and base path configuration |
Memory error | Use smaller model or increase system RAM |
Timeout errors | Increase REQUEST_TIMEOUT_MS in configuration |
Debug Mode
# Enable detailed logging
config = Config(
debug_mode=True,
verbose_logging=True,
log_level="DEBUG"
)
# Or via environment
export DEBUG=true
export MCP_LOG_LEVEL=DEBUG
export VERBOSE_LOGGING=true
Health Check
async def health_check():
"""Check system health."""
checks = {
"python_version": sys.version,
"ollama_connected": config.validate_ollama_connection(),
"models_available": await llama_service.list_models(),
"tools_loaded": len(await tool_manager.get_tools()),
"memory_usage": psutil.virtual_memory().percent,
"disk_usage": psutil.disk_usage('/').percent
}
return {
"status": "healthy" if all(checks.values()) else "degraded",
"checks": checks,
"timestamp": datetime.now().isoformat()
}
🤝 Contributing
We welcome contributions! See CONTRIBUTING.md for guidelines.
Areas for Contribution
- 🛠️ New tools and integrations
- 📝 Documentation improvements
- 🐛 Bug fixes
- 🚀 Performance optimizations
- 🧪 Test coverage
- 🌐 Internationalization
Development Workflow
# Fork and clone
git clone https://github.com/YOUR_USERNAME/llama4-maverick-mcp-python.git
# Create branch
git checkout -b feature/your-feature
# Make changes and test
pytest
# Commit with conventional commits
git commit -m "feat: add new amazing feature"
# Push and create PR
git push origin feature/your-feature
📄 License
MIT License - See LICENSE file
👨💻 Author
Yobie Benjamin
Version 0.9
August 1, 2025
🙏 Acknowledgments
- Anthropic for the MCP protocol
- Ollama team for local model hosting
- Meta for Llama models
- Python community for excellent libraries
📞 Support
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Documentation: Wiki
Ready to experience the power of local AI? Start with Llama 4 Maverick MCP Python today! 🦙🐍🚀
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。