Llama Maverick Hub MCP Server

Llama Maverick Hub MCP Server

A meta-MCP server that uses Llama AI as an orchestrator to intelligently route requests and coordinate workflows across multiple MCP services like Stripe, GitHub, and databases. Enables complex multi-service operations with AI-driven decision making and parallel execution capabilities.

Category
访问服务器

README

Llama Maverick Hub MCP Server

Author: Yobie Benjamin
Version: 0.2
Date: July 28, 2025

Overview

The Llama Maverick Hub MCP Server is a revolutionary orchestration platform that positions Llama Maverick as the central AI brain connecting to and coordinating multiple MCP-enabled services. Unlike traditional MCP servers that provide tools to AI models, this hub makes Llama the orchestrator that intelligently manages and routes requests across multiple MCP services like Stripe, GitHub, databases, and more.

Key Innovation

This is a Meta-MCP Server that acts as both:

  • MCP Server: Exposes unified tools to Claude Desktop or other MCP clients
  • MCP Client: Connects to multiple external MCP services (Stripe, GitHub, etc.)
  • AI Orchestrator: Uses Llama Maverick to make intelligent routing and workflow decisions

Architecture

┌─────────────────┐
│  Claude Desktop │
│   (MCP Client)  │
└────────┬────────┘
         │ MCP Protocol
         ▼
┌─────────────────────────────────────┐
│    Llama Maverick Hub MCP Server    │
│  ┌─────────────────────────────┐    │
│  │   Llama Maverick AI Brain   │    │
│  │  (Orchestration & Routing)  │    │
│  └─────────────────────────────┘    │
│           │         │         │      │
│    ┌──────▼───┬────▼───┬────▼───┐  │
│    │ Service  │ Service│ Service│  │
│    │ Registry │ Router │ Manager│  │
│    └──────────┴────────┴────────┘  │
└─────────┬──────────┬──────────┬────┘
          │          │          │
     MCP Protocol  MCP      MCP Protocol
          │       Protocol      │
          ▼          ▼          ▼
    ┌──────────┐ ┌──────┐ ┌──────────┐
    │  Stripe  │ │GitHub│ │ Database │
    │   MCP    │ │ MCP  │ │   MCP    │
    └──────────┘ └──────┘ └──────────┘

Features

🧠 AI-Driven Orchestration

  • Intelligent Routing: Llama analyzes requests and routes to the best service
  • Workflow Planning: AI designs multi-step workflows across services
  • Error Recovery: Smart error analysis and retry strategies
  • Result Synthesis: Combines results from multiple services intelligently

🔗 Multi-Service Integration

  • Service Discovery: Automatic discovery of MCP service capabilities
  • Unified Tool Access: Single interface to tools from all connected services
  • Parallel Execution: Query multiple services simultaneously
  • Service Health Monitoring: Track availability and performance

🔄 Advanced Workflows

  • Multi-Step Operations: Chain operations across different services
  • Dependency Management: Handle complex step dependencies
  • Context Passing: Share data between workflow steps
  • Retry Policies: Configurable retry strategies per step

🎯 Real-World Integrations

  • Stripe MCP: Complete payment workflows with orchestration
  • GitHub MCP: Repository management with AI assistance
  • Database MCP: Data operations with intelligent queries
  • Custom Services: Easy integration of any MCP service

Installation

Prerequisites

  1. Node.js 18+ and npm
  2. Ollama with Llama model installed
  3. Claude Desktop (for MCP client)
  4. MCP Services you want to connect (e.g., Stripe MCP)

Quick Start

# Clone the repository
git clone https://github.com/yobieben/llama-maverick-hub-mcp.git
cd llama-maverick-hub-mcp

# Install dependencies
npm install

# Build the project
npm run build

# Configure services (edit config.json)
cp config.example.json config.json

# Start the hub server
npm start

Installing Ollama and Llama

# Install Ollama
curl -fsSL https://ollama.ai/install.sh | sh

# Pull Llama model
ollama pull llama3.2

# Verify installation
ollama list

Configuration

Basic Configuration (config.json)

{
  "hub": {
    "name": "llama-maverick-hub",
    "version": "0.2.0",
    "port": 8080,
    "logLevel": "info"
  },
  "llama": {
    "model": "llama3.2",
    "baseUrl": "http://localhost:11434",
    "contextWindow": 8192,
    "defaultTemperature": 0.7
  },
  "services": [
    {
      "id": "stripe",
      "name": "Stripe MCP",
      "description": "Stripe payment processing",
      "transport": "stdio",
      "endpoint": "stripe-mcp",
      "enabled": true,
      "command": "npx",
      "args": ["-y", "@stripe/mcp-server"],
      "reconnectPolicy": {
        "maxRetries": 5,
        "retryDelayMs": 5000,
        "backoffMultiplier": 2
      }
    },
    {
      "id": "github",
      "name": "GitHub MCP",
      "description": "GitHub repository management",
      "transport": "stdio",
      "endpoint": "github-mcp",
      "enabled": true,
      "command": "github-mcp-server",
      "args": ["--token", "${GITHUB_TOKEN}"]
    }
  ],
  "orchestration": {
    "maxConcurrentOperations": 10,
    "defaultTimeout": 30000,
    "retryPolicy": {
      "maxRetries": 3,
      "retryDelayMs": 1000
    }
  }
}

Claude Desktop Configuration

Add to your Claude Desktop config:

{
  "mcpServers": {
    "llama-hub": {
      "command": "node",
      "args": ["/path/to/llama-maverick-hub-mcp/dist/index.js"],
      "env": {
        "LLAMA_HUB_LOG_LEVEL": "info",
        "STRIPE_API_KEY": "your_stripe_key",
        "GITHUB_TOKEN": "your_github_token"
      }
    }
  }
}

Environment Variables

# Hub Configuration
LLAMA_HUB_NAME=llama-maverick-hub
LLAMA_HUB_PORT=8080
LLAMA_HUB_LOG_LEVEL=debug

# Llama Configuration
LLAMA_HUB_LLAMA_MODEL=llama3.2
LLAMA_HUB_LLAMA_BASE_URL=http://localhost:11434

# Service Configuration
LLAMA_HUB_SERVICE_STRIPE_ENABLED=true
LLAMA_HUB_SERVICE_STRIPE_COMMAND=npx
LLAMA_HUB_SERVICE_GITHUB_ENABLED=true

# Security
LLAMA_HUB_ENABLE_AUTH=false
LLAMA_HUB_API_KEYS=key1,key2

Usage Examples

Basic Tool Execution

When you interact with Claude Desktop, you can now access tools from all connected services:

User: "Create a new Stripe customer and set up a subscription"

Claude uses: stripe_create_customer, stripe_create_subscription
Hub routes to: Stripe MCP service
Llama assists: Validates data, handles errors

Intelligent Routing

User: "Process a payment for this customer"

Llama analyzes:
- Customer location
- Payment amount
- Risk factors

Llama decides:
- Route to Stripe for low-risk
- Route to fraud service for high-risk
- Use alternative processor for specific regions

Multi-Service Workflows

User: "Onboard a new customer with payment"

Hub executes workflow:
1. Create Stripe customer
2. Set up payment method
3. Create subscription
4. Store in database
5. Send welcome email
6. Update analytics

All orchestrated by Llama Maverick!

Parallel Service Queries

User: "Get customer information from all systems"

Hub queries simultaneously:
- Stripe for payment data
- Database for profile
- Analytics for behavior
- Support for tickets

Llama synthesizes comprehensive report

Advanced Features

Custom Workflows

Create complex multi-service workflows:

orchestrator.registerWorkflow({
  id: 'customer-lifecycle',
  name: 'Complete Customer Lifecycle',
  description: 'Onboard, activate, and monitor customer',
  steps: [
    {
      id: 'stripe-setup',
      service: 'stripe',
      tool: 'create_customer',
      arguments: { /* ... */ }
    },
    {
      id: 'database-store',
      service: 'database',
      tool: 'insert_record',
      arguments: { /* ... */ },
      dependsOn: ['stripe-setup']
    },
    {
      id: 'email-welcome',
      service: 'email',
      tool: 'send_email',
      arguments: { /* ... */ },
      dependsOn: ['database-store']
    }
  ]
});

AI-Powered Decision Making

Llama Maverick makes intelligent decisions:

// Llama analyzes request and determines best approach
const routing = await llamaService.analyzeRouting(
  userRequest,
  availableServices
);

// Llama plans multi-step workflow
const workflow = await llamaService.planWorkflow(
  goal,
  services,
  tools
);

// Llama synthesizes results from multiple sources
const summary = await llamaService.synthesizeResults(
  serviceResults,
  originalRequest
);

Service Health Monitoring

Automatic failover and recovery:

// Registry tracks service health
registry.on('service:unhealthy', (service) => {
  // Llama determines fallback strategy
  const fallback = llamaService.determineFallback(service);
  
  // Route to alternative service
  orchestrator.reroute(service, fallback);
});

Real-World Use Cases

1. E-Commerce Platform

Workflow: Complete Order Processing
- Validate inventory (Database MCP)
- Process payment (Stripe MCP)
- Update inventory (Database MCP)
- Create shipping label (Shipping MCP)
- Send confirmation (Email MCP)
- Update analytics (Analytics MCP)

2. SaaS Subscription Management

Workflow: Subscription Lifecycle
- Create customer (Stripe MCP)
- Provision resources (Cloud MCP)
- Set up monitoring (Monitoring MCP)
- Configure billing (Stripe MCP)
- Send onboarding (Email MCP)

3. Financial Services

Workflow: Loan Application
- Credit check (Credit MCP)
- Risk assessment (Risk MCP)
- Document verification (Document MCP)
- Approval workflow (Workflow MCP)
- Fund disbursement (Banking MCP)

4. Developer Tools

Workflow: CI/CD Pipeline
- Code analysis (GitHub MCP)
- Run tests (Testing MCP)
- Build artifacts (Build MCP)
- Deploy to cloud (Cloud MCP)
- Update monitoring (Monitoring MCP)

API Reference

Hub Tools

hub_execute_workflow

Execute a predefined multi-service workflow.

{
  "name": "hub_execute_workflow",
  "arguments": {
    "workflowId": "customer-onboarding",
    "parameters": {
      "email": "customer@example.com",
      "plan": "premium"
    }
  }
}

hub_smart_route

Use Llama AI to intelligently route requests.

{
  "name": "hub_smart_route",
  "arguments": {
    "query": "Process payment for high-risk customer",
    "context": {
      "amount": 1000,
      "currency": "USD",
      "risk_score": 85
    }
  }
}

hub_parallel_query

Query multiple services in parallel.

{
  "name": "hub_parallel_query",
  "arguments": {
    "services": ["stripe", "database", "analytics"],
    "query": "Get customer profile"
  }
}

Service Tools

All tools from connected services are available with service prefix:

  • stripe_create_customer
  • stripe_create_charge
  • github_create_repo
  • github_create_issue
  • database_query
  • database_insert

Development

Project Structure

llama-maverick-hub-mcp/
├── src/
│   ├── index.ts                 # Main server entry point
│   ├── orchestrator/
│   │   └── hub-orchestrator.ts  # Core orchestration logic
│   ├── registry/
│   │   └── service-registry.ts  # Service management
│   ├── clients/
│   │   └── mcp-client-manager.ts # MCP client connections
│   ├── services/
│   │   └── llama-service.ts     # Llama AI integration
│   ├── config/
│   │   └── config-manager.ts    # Configuration management
│   └── integrations/
│       └── stripe-integration.ts # Stripe-specific workflows
├── config.json                   # Hub configuration
├── package.json                  # Node.js dependencies
├── tsconfig.json                 # TypeScript configuration
└── README.md                     # This file

Adding New Services

  1. Define Service Configuration:
{
  "id": "myservice",
  "name": "My Service MCP",
  "transport": "stdio",
  "command": "my-service-mcp",
  "enabled": true
}
  1. Create Integration Module (optional):
export class MyServiceIntegration {
  registerWorkflows() {
    // Define service-specific workflows
  }
}
  1. Register with Hub:
const integration = new MyServiceIntegration(orchestrator);
integration.registerWorkflows();

Testing

# Run tests
npm test

# Run specific test
npm test -- --grep "orchestrator"

# Test with coverage
npm run test:coverage

Debugging

Enable debug logging:

export LLAMA_HUB_LOG_LEVEL=debug
npm start

View service connections:

# Check service status
curl http://localhost:8080/status

# View service registry
curl http://localhost:8080/services

Monitoring

Metrics

The hub exposes metrics for monitoring:

  • Service availability
  • Request latency
  • Workflow execution time
  • Error rates
  • Llama inference time

Health Checks

# Hub health
curl http://localhost:8080/health

# Service health
curl http://localhost:8080/health/stripe

Logging

Structured logging with Winston:

logger.info('Workflow executed', {
  workflowId: 'customer-onboarding',
  duration: 1234,
  steps: 6,
  success: true
});

Troubleshooting

Common Issues

Llama Connection Failed

Error: Failed to connect to Ollama
Solution: Ensure Ollama is running: ollama serve

Service Not Connecting

Error: Failed to connect to service: stripe
Solution: Check service command and arguments in config

Workflow Timeout

Error: Workflow execution timeout
Solution: Increase timeout in orchestration config

Debug Mode

Enable verbose logging:

// In code
logger.level = 'debug';

// Via environment
LLAMA_HUB_LOG_LEVEL=debug npm start

Security

Best Practices

  1. API Key Management: Use environment variables for sensitive keys
  2. Service Isolation: Run services in separate processes
  3. Rate Limiting: Configure per-service rate limits
  4. Audit Logging: Log all workflow executions
  5. Error Handling: Never expose internal errors to clients

Authentication

Enable authentication in config:

{
  "security": {
    "enableAuth": true,
    "apiKeys": ["key1", "key2"]
  }
}

Performance

Optimization Tips

  1. Cache Service Discoveries: Reduce repeated capability queries
  2. Parallel Execution: Use hub_parallel_query for multi-service operations
  3. Connection Pooling: Reuse MCP client connections
  4. Workflow Optimization: Minimize step dependencies
  5. Llama Tuning: Adjust temperature for faster inference

Benchmarks

Typical performance metrics:

  • Service connection: < 100ms
  • Tool execution: < 500ms
  • Workflow step: < 1s
  • Llama inference: < 2s
  • Full workflow: < 10s

Contributing

We welcome contributions! Please see CONTRIBUTING.md for guidelines.

Areas for Contribution

  • New service integrations
  • Workflow templates
  • Performance optimizations
  • Documentation improvements
  • Test coverage

License

MIT License - see LICENSE file

Support

Acknowledgments

  • Anthropic for the MCP protocol
  • Meta for Llama models
  • Ollama for local model hosting
  • Stripe for payment MCP example
  • The open-source community

Built with ❤️ by Yobie Benjamin
Orchestrating the future of AI-driven service integration

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选