llm-token-tracker
Token usage tracker for OpenAI and Claude APIs with MCP (Model Context Protocol) support.
README
LLM Token Tracker 🧮
Token usage tracker for OpenAI and Claude APIs with MCP (Model Context Protocol) support. Pass accurate API costs to your users.
✨ Features
- 🎯 Simple Integration - One line to wrap your API client
- 📊 Automatic Tracking - No manual token counting
- 💰 Accurate Pricing - Up-to-date pricing for all models (2025)
- 🔄 Multiple Providers - OpenAI and Claude support
- 📈 User Management - Track usage per user/session
- 🌐 Currency Support - USD and KRW
- 🤖 MCP Server - Use directly in Claude Desktop!
- 🆕 Intuitive Session Tracking - Real-time usage with progress bars
📦 Installation
npm install llm-token-tracker
🚀 Quick Start
Option 1: Use as Library
const { TokenTracker } = require('llm-token-tracker');
// or import { TokenTracker } from 'llm-token-tracker';
// Initialize tracker
const tracker = new TokenTracker({
currency: 'USD' // or 'KRW'
});
// Example: Manual tracking
const trackingId = tracker.startTracking('user-123');
// ... your API call here ...
tracker.endTracking(trackingId, {
provider: 'openai',
model: 'gpt-3.5-turbo',
inputTokens: 100,
outputTokens: 50,
totalTokens: 150
});
// Get user's usage
const usage = tracker.getUserUsage('user-123');
console.log(`Total cost: $${usage.totalCost}`);
🔧 With Real APIs
To use with actual OpenAI/Anthropic APIs:
const OpenAI = require('openai');
const { TokenTracker } = require('llm-token-tracker');
const tracker = new TokenTracker();
const openai = tracker.wrap(new OpenAI({
apiKey: process.env.OPENAI_API_KEY
}));
// Use normally - tracking happens automatically
const response = await openai.chat.completions.create({
model: "gpt-3.5-turbo",
messages: [{ role: "user", content: "Hello!" }]
});
console.log(response._tokenUsage);
// { tokens: 125, cost: 0.0002, model: "gpt-3.5-turbo" }
Option 2: Use as MCP Server
Add to Claude Desktop settings (~/Library/Application Support/Claude/claude_desktop_config.json):
{
"mcpServers": {
"token-tracker": {
"command": "npx",
"args": ["llm-token-tracker"]
}
}
}
Then in Claude:
- "Calculate current session usage" - See current session usage with intuitive format
- "Calculate current conversation cost" - Get cost breakdown with input/output tokens
- "Track my API usage"
- "Compare costs between GPT-4 and Claude"
- "Show my total spending today"
Available MCP Tools
-
get_current_session- 🆕 Get current session usage (RECOMMENDED)- Returns: Used/Remaining tokens, Input/Output breakdown, Cost, Progress bar
- Default user_id:
current-session - Default budget: 190,000 tokens
- Perfect for real-time conversation tracking!
-
track_usage- Track token usage for an AI API call- Parameters: provider, model, input_tokens, output_tokens, user_id
-
get_usage- Get usage summary for specific user or all users -
compare_costs- Compare costs between different models -
clear_usage- Clear usage data for a user
Example MCP Output
💰 Current Session
━━━━━━━━━━━━━━━━━━━━━━
📊 Used: 62,830 tokens (33.1%)
✨ Remaining: 127,170 tokens
[██████░░░░░░░░░░░░░░]
📥 Input: 55,000 tokens
📤 Output: 7,830 tokens
💵 Cost: $0.2825
━━━━━━━━━━━━━━━━━━━━━━
📋 Model Breakdown:
• anthropic/claude-sonnet-4.5: 62,830 tokens ($0.2825)
📊 Supported Models & Pricing (Updated 2025)
OpenAI (2025)
| Model | Input (per 1K tokens) | Output (per 1K tokens) | Notes |
|---|---|---|---|
| GPT-5 Series | |||
| GPT-5 | $0.00125 | $0.010 | Latest flagship model |
| GPT-5 Mini | $0.00025 | $0.0010 | Compact version |
| GPT-4.1 Series | |||
| GPT-4.1 | $0.0020 | $0.008 | Advanced reasoning |
| GPT-4.1 Mini | $0.00015 | $0.0006 | Cost-effective |
| GPT-4o Series | |||
| GPT-4o | $0.0025 | $0.010 | Multimodal |
| GPT-4o Mini | $0.00015 | $0.0006 | Fast & cheap |
| o1 Reasoning Series | |||
| o1 | $0.015 | $0.060 | Advanced reasoning |
| o1 Mini | $0.0011 | $0.0044 | Efficient reasoning |
| o1 Pro | $0.015 | $0.060 | Pro reasoning |
| Legacy Models | |||
| GPT-4 Turbo | $0.01 | $0.03 | |
| GPT-4 | $0.03 | $0.06 | |
| GPT-3.5 Turbo | $0.0005 | $0.0015 | Most affordable |
| Media Models | |||
| DALL-E 3 | $0.040 per image | - | Image generation |
| Whisper | $0.006 per minute | - | Speech-to-text |
Anthropic (2025)
| Model | Input (per 1K tokens) | Output (per 1K tokens) | Notes |
|---|---|---|---|
| Claude 4 Series | |||
| Claude Opus 4.1 | $0.015 | $0.075 | Most powerful |
| Claude Opus 4 | $0.015 | $0.075 | Flagship model |
| Claude Sonnet 4.5 | $0.003 | $0.015 | Best for coding |
| Claude Sonnet 4 | $0.003 | $0.015 | Balanced |
| Claude 3 Series | |||
| Claude 3.5 Sonnet | $0.003 | $0.015 | |
| Claude 3.5 Haiku | $0.00025 | $0.00125 | Fastest |
| Claude 3 Opus | $0.015 | $0.075 | |
| Claude 3 Sonnet | $0.003 | $0.015 | |
| Claude 3 Haiku | $0.00025 | $0.00125 | Most affordable |
Note: Prices shown are per 1,000 tokens. Batch API offers 50% discount. Prompt caching can reduce costs by up to 90%.
🎯 Examples
Run the example:
npm run example
Check examples/basic-usage.js for detailed usage patterns.
📝 API Reference
new TokenTracker(config)
config.currency: 'USD' or 'KRW' (default: 'USD')config.webhookUrl: Optional webhook for usage notifications
tracker.wrap(client)
Wrap an OpenAI or Anthropic client for automatic tracking.
tracker.forUser(userId)
Create a user-specific tracker instance.
tracker.startTracking(userId?, sessionId?)
Start manual tracking session. Returns tracking ID.
tracker.endTracking(trackingId, usage)
End tracking and record usage.
tracker.getUserUsage(userId)
Get total usage for a user.
tracker.getAllUsersUsage()
Get usage summary for all users.
🛠 Development
# Install dependencies
npm install
# Build TypeScript
npm run build
# Watch mode
npm run dev
# Run examples
npm run example
📄 License
MIT
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
🐛 Issues
For bugs and feature requests, please create an issue.
📦 What's New in v2.3.0
- 💱 Real-time exchange rates - Automatic USD to KRW conversion
- 🌐 Uses exchangerate-api.com for accurate rates
- 💾 24-hour caching to minimize API calls
- 📊 New
get_exchange_ratetool to check current rates - 🔄 Background auto-updates with fallback support
What's New in v2.2.0
- 🗄️ File-based persistence - Session data survives server restarts
- 💾 Automatic saving to
~/.llm-token-tracker/sessions.json - 🔄 Works for both npm and local installations
- 📊 Historical data tracking across sessions
- 🎯 Zero configuration required - just works!
What's New in v2.1.0
- 🆕 Added
get_current_sessiontool for intuitive session tracking - 📊 Real-time progress bars and visual indicators
- 💰 Enhanced cost breakdown with input/output token separation
- 🎨 Improved formatting with thousands separators
- 🔧 Better default user_id handling (
current-session)
Built with ❤️ for developers who need transparent AI API billing.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。