
LLM Tool-Calling Assistant
Connects local LLMs to external tools (calculator, knowledge base) via MCP protocol, enabling automatic tool detection and execution to enhance query responses.
README
<h1 align="center">🧠 LLM Tool-Calling Assistant with MCP Integration</h1> <p align="center"> <b>Connect your local LLM to real-world tools, knowledge bases, and APIs via MCP.</b> </p> <p align="center"> <img src="https://img.shields.io/badge/MCP%20Support-Enabled-blue?style=flat-square" /> <img src="https://img.shields.io/badge/LLM%20Backend-OpenAI%20or%20Local-brightgreen?style=flat-square" /> <img src="https://img.shields.io/badge/Tool%20Calling-Automated-ff69b4?style=flat-square" /> <img src="https://img.shields.io/badge/Python-3.8+-yellow?style=flat-square" /> </p>
<p align="center"> <img src="https://user-images.githubusercontent.com/74038190/225813708-98b745f2-7d22-48cf-9150-083f1b00d6c9.gif" width="450"> </p>
This project connects a local LLM (e.g. Qwen) to tools such as a calculator or a knowledge base via the MCP protocol. The assistant automatically detects and calls these tools to help answer user queries.
📦 Features
- 🔧 Tool execution through MCP server
- 🧠 Local LLM integration via HTTP or OpenAI SDK
- 📚 Knowledge base support (
data.json
) - ⚡ Supports
stdio
andsse
transports
🗂 Project Files
File | Description |
---|---|
server.py |
Registers tools and starts MCP server |
client-http.py |
Uses aiohttp to communicate with local LLM |
clientopenai.py |
Uses OpenAI-compatible SDK for LLM + tool call logic |
client-stdio.py |
MCP client using stdio |
client-see.py |
MCP client using SSE |
data.json |
Q&A knowledge base |
📥 Installation
Requirements
Python 3.8+
Install dependencies:
pip install -r requirements.txt
requirements.txt
aiohttp==3.11.18
nest_asyncio==1.6.0
python-dotenv==1.1.0
openai==1.77.0
mcp==1.6.0
🚀 Getting Started
1. Run the MCP server
python server.py
This launches your tool server with functions like add
, multiply
, and get_knowledge_base
.
2. Start a client
Option A: HTTP client (local LLM via raw API)
python client-http.py
Option B: OpenAI SDK client
python client-openai.py
Option C: stdio transport
python client-stdio.py
Option D: SSE transport
Make sure server.py
sets:
transport = "sse"
Then run:
python client-sse.py
💬 Example Prompts
Math Tool Call
What is 8 times 3?
Response:
Eight times three is 24.
Knowledge Base Question
What are the healthcare benefits available to employees in Singapore?
Response will include the relevant answer from data.json
.
📁 Example: data.json
[
{
"question": "What is Singapore's public holiday schedule?",
"answer": "Singapore observes several public holidays..."
},
{
"question": "How do I apply for permanent residency in Singapore?",
"answer": "Submit an online application via the ICA website..."
}
]
🔧 Configuration
Inside client-http.py
or clientopenai.py
, update the following:
LOCAL_LLM_URL = "..."
TOKEN = "your-api-token"
LOCAL_LLM_MODEL = "your-model"
Make sure your LLM is serving OpenAI-compatible API endpoints.
🧹 Cleanup
Clients handle tool calls and responses automatically. You can stop the server or client using Ctrl+C
.
🪪 License
MIT License. See LICENSE file.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。