LNR-server-02-cascading-failure-scenario-simulatio
This server is to precess files for LNR.
README
⚠️ Important Notice ⚠️
As the paper is under review, all contents in this repository are currently not permitted for reuse by anyone until this announcement is removed. Thank you for your understanding! 🙏
1. Overview & Objectives
This repository contains the complete implementation, experimental data, and supplementary results for the paper ××× developed by XXX University in China, and .
Pending publication, the code is shared under a restrictive license. Once the paper is accepted, the repository will transition to a MIT license. Please contact the corresponding author for any inquiries regarding academic use during the review period.
2. Videos of agents operation
2.1 Operation of the developed prototype
↓↓↓ A snippet of using the developed prototype to run the TS-ReAct-based agents driven by GPT-4o
↓↓↓ A snippet of updating the tool kit in the prototype
The full video to showcase the prototype and tool kit updating can be found in:
2.2 Operation of agents based on ReAct pattern
↓↓↓ A snippet of running the ReAct-based agents driven by GPT-4o, GPT-4, and GPT-3.5 Turbo.
The full video can be found here ()
↓↓↓ A snippet of running the ReAct-based agents driven by Qwen2.5, Deepseek-V3, Gemma-2, Llama-3.1, and Mixtral MoE.
The full video can be found here ()
2.3 Operation of agents based on TS-ReAct pattern
↓↓↓ A snippet of running the TS agent based on TS-ReAct pattern.
The full video can be found here ()
↓↓↓ A snippet of running the ReAct agent based on TS-ReAct pattern.
The full video can be found here ()
3. Repository Structure
4. Acknowledgments
This work heavily relies on excellent open-source projects, including but not limited to:
- LangGraph & LangChain
- Hugging Face MTEB leaderboard
- NetworkX, PyTorch Geometric, and numerous LLM providers (OpenAI, Anthropic, Qwen, Llama, etc.)
We are deeply grateful to all contributors of these foundational work.
5. How to Reuse This Repository
5.1 Importing the Lifeline Recovery Tool Set
- Copy all tool definition files from
tools/into your target agent directory. - Import the tools using the standardized registry pattern shown in the example notebooks.
5.2 Running Baseline ReAct Agents
- Directory:
agents_reAct/ - Supports 8 different LLMs (GPT-4o, Claude-3, Llama-3.1-405B, Qwen2.5, etc.)
- Ready-to-run scripts with configuration YAMLs
5.3 Running the Proposed GraphRAG + MCP Agents
- Directory:
agents_graphRAG_MCP/ - Same 8 backbone LLMs
- Includes GraphRAG index construction scripts and MCP search configurations
5.4 Running the Interactive Prototype
- Directory:
prototype/ - Dynamic tool registration/hot-reloading
- Web-based GUI + terminal interface
- Supports on-the-fly addition of new recovery actions
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。