Local LLM MCP Server
Bridges local LLMs running in LM Studio with MCP clients like Claude Desktop to perform reasoning and analysis tasks while keeping sensitive data private. It features a suite of tools for local code review, privacy scanning, and content transformation using auto-discovered local models.
README
Local LLM MCP Server
A Model Context Protocol (MCP) server that bridges local LLMs running in LM Studio with Claude Desktop and other MCP clients. Keep your sensitive data private by running AI tasks locally while seamlessly integrating with cloud-based AI assistants.
🌟 Features
🔒 Privacy-First Design
- Local Processing: All sensitive data stays on your machine
- No Cloud Exposure: Private analysis, code review, and content processing happens locally
- Privacy Levels: Configurable privacy protection (strict, moderate, minimal)
- No Telemetry: Zero usage tracking or data collection
🤖 Dynamic Multi-Model Support
- Auto-Discovery: Automatically detects all models loaded in LM Studio
- Flexible Selection: Use different models for different tasks
- Runtime Switching: Change default models during your session
- Per-Request Override: Specify model for individual requests
- Smart Initialization: First available model auto-selected as default
🛠️ Comprehensive Tool Suite
Local Reasoning - General-purpose AI tasks with complete privacy
- Complex problem solving and multi-step reasoning
- Question answering and task planning
- Context-aware responses
Private Analysis - 7 analysis types for sensitive content
- Sentiment Analysis (domain-aware)
- Entity Extraction (people, orgs, locations, domain-specific)
- Content Classification
- Summarization with key points
- Privacy Scanning (PII, GDPR compliance)
- Security Auditing (vulnerabilities, misconfigurations)
Secure Rewriting - Transform text while maintaining privacy
- Style adaptation (formal, casual, professional)
- Sensitive information removal
- Privacy-preserving transformations
Code Analysis - Local code review and security
- Security vulnerability detection
- Code quality assessment
- Bug detection and optimization suggestions
Template Completion - Intelligent form and document filling
🎯 Domain-Specific Intelligence
Specialized analysis for:
- Medical: Healthcare context, HIPAA compliance, clinical terminology
- Legal: Legal terminology, regulatory compliance, confidentiality
- Financial: Financial regulations, market analysis, data protection
- Technical: Software development, engineering contexts
- Academic: Scholarly research, methodology, citations
🚀 Quick Start
Prerequisites
-
Node.js 18+
node --version # Should be >= 18.0.0 -
LM Studio
- Download from lmstudio.ai
- Load at least one model (e.g., Llama 3.2, Qwen, Mistral)
- Start the local server (Server tab → Start Server)
- Default URL:
http://localhost:1234
Installation
git clone https://github.com/yourusername/local-llm-mcp-server.git
cd local-llm-mcp-server
npm install
npm run build
Configure Claude Desktop
Edit your Claude Desktop config file:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json
Add this configuration:
{
"mcpServers": {
"local-llm": {
"command": "node",
"args": ["/absolute/path/to/local-llm-mcp-server/dist/index.js"]
}
}
}
Important: Use the absolute path to your installation.
Start Using
- Restart Claude Desktop - The server starts automatically
- Discover Models - Read resource
local://modelsto see available models - Try It - Ask Claude to use the
local_reasoningtool with a simple prompt
The server automatically:
- Discovers all models loaded in LM Studio
- Sets the first model as default
- Provides full capability documentation via
local://capabilities
Convenience Scripts
For easier server management, use the included scripts:
# Start in local mode (stdio - for Claude Desktop)
npm run start:local
# Start in remote mode (HTTP - for network access)
npm run start:remote
# Start in secure mode (HTTPS - encrypted network access)
npm run start:https
# Start in dual mode (stdio + HTTP for both local and remote)
npm run start:dual
# Generate SSL certificates for HTTPS
npm run generate:certs
# Stop all running servers
npm run stop
See SCRIPTS_GUIDE.md for detailed usage.
🌐 Remote Network Access
Access the server from other devices on your home network or connect Claude Desktop remotely!
Connect Claude Desktop Remotely
Quick Start (3 steps):
# 1. Start HTTPS server
npm run start:https
# 2. Add to claude_desktop_config.json:
{
"mcpServers": {
"local-llm-remote": {
"command": "npx",
"args": ["-y", "mcp-remote", "https://localhost:3010/sse"],
"env": {"NODE_TLS_REJECT_UNAUTHORIZED": "0"}
}
}
}
# 3. Restart Claude Desktop
📖 Complete Guide: REMOTE_QUICKSTART.md
Remote Access Methods
Method 1: Claude Desktop Custom Connector UI (Production)
- For Claude Pro/Max/Team/Enterprise users
- Requires valid SSL certificate (not self-signed)
- Simple UI-based setup in Settings > Connectors
- Guide: CLAUDE_DESKTOP_REMOTE.md
Method 2: mcp-remote Proxy (Development/Testing)
- Works with self-signed certificates
- Supports localhost and local networks
- JSON configuration file
- Examples: claude_desktop_config_examples.json
Network Access from Any Client
# Start in HTTP mode for network access
npm run start:remote
# Access from any device on your network
curl http://192.168.1.100:3000/health
Available endpoints:
/- Server information/health- Health check/mcp- MCP Streamable HTTP endpoint (GET/POST/DELETE)
See NETWORK_USAGE.md for complete guide including:
- Firewall configuration
- Client examples (JavaScript, Python, cURL)
- Troubleshooting
- Multiple device scenarios
Transport Modes:
- Local Mode (stdio): For Claude Desktop integration
- HTTP Mode: Unencrypted network access
- HTTPS Mode: Encrypted network access with SSL/TLS
- Dual Mode: Run stdio + HTTP/HTTPS simultaneously!
See HTTPS_GUIDE.md for secure setup and dual mode usage.
Specification Compliance
✅ MCP Streamable HTTP Transport (Protocol 2025-03-26)
Our implementation uses the latest MCP Streamable HTTP transport:
- Protocol version:
2025-03-26 - Full JSON-RPC 2.0 compliance
- Session management via headers
- SSE streaming for responses
- Stateful mode with session IDs
# Run Streamable HTTP test
npm run test:streamable
🔄 Migration Note: SSE transport (2024-11-05) has been replaced with Streamable HTTP per MCP specification. See STREAMABLE_HTTP_MIGRATION.md for migration guide.
📋 Available Tools
Core Tools
local_reasoning
Use the local LLM for specialized reasoning tasks while keeping data private.
// Example usage in Claude
await tools.local_reasoning({
prompt: "Analyze the logical flow of this argument...",
system_prompt: "You are a critical thinking expert",
model_params: {
temperature: 0.7,
max_tokens: 1500
}
});
private_analysis
Analyze sensitive content locally without cloud exposure.
await tools.private_analysis({
content: "Confidential business document...",
analysis_type: "sentiment", // or "entities", "classification", etc.
domain: "financial"
});
secure_rewrite
Rewrite or transform text locally for privacy.
await tools.secure_rewrite({
content: "Original text with sensitive info...",
style: "professional",
privacy_level: "strict"
});
code_analysis
Analyze code locally for security, quality, or documentation.
await tools.code_analysis({
code: "function processUserData(input) { ... }",
language: "javascript",
analysis_focus: "security"
});
template_completion
Complete templates or forms using the local LLM.
await tools.template_completion({
template: "Dear [NAME], Thank you for [ACTION]...",
context: "Customer submitted a support ticket about billing",
format: "email"
});
📚 Resources
Available Resources
local://models- List of available models in LM Studiolocal://status- Current status of the local LLM serverlocal://config- Server configuration and capabilities
Example Resource Usage
// Get available models
const models = await resources.read("local://models");
// Check server status
const status = await resources.read("local://status");
// View configuration
const config = await resources.read("local://config");
🎯 Prompt Templates
Using Pre-built Templates
// Privacy analysis template
await prompts.get("privacy-analysis", {
content: "Document to analyze...",
regulation: "GDPR"
});
// Code security review template
await prompts.get("code-security-review", {
code: "const user = req.body.user;",
language: "javascript",
security_focus: "injection vulnerabilities"
});
// Meeting summary template
await prompts.get("meeting-summary", {
meeting_content: "Meeting transcript...",
participants: "Alice, Bob, Charlie",
focus_areas: "action items, decisions"
});
Available Templates
- Privacy & Security:
privacy-analysis,secure-rewrite - Code Analysis:
code-security-review,code-optimization - Business:
meeting-summary,email-draft,risk-assessment - Research:
research-synthesis,literature-review - Content:
content-adaptation,technical-documentation
⚙️ Configuration
Model Configuration
Configure different models for different capabilities:
{
"models": {
"reasoning": {
"name": "Reasoning Model",
"capabilities": ["reasoning", "analysis", "problem-solving"],
"defaultParams": {
"temperature": 0.7,
"max_tokens": 2000
}
},
"privacy": {
"name": "Privacy Model",
"capabilities": ["privacy", "anonymization", "security"],
"defaultParams": {
"temperature": 0.2,
"max_tokens": 1500
}
}
}
}
Privacy Settings
{
"privacy": {
"defaultLevel": "moderate",
"enableLogging": false,
"logRetentionDays": 7
}
}
Performance Tuning
{
"performance": {
"cacheEnabled": true,
"cacheTTL": 3600,
"maxConcurrentRequests": 5,
"requestTimeout": 60000
}
}
🔒 Privacy Levels
Strict
- Never expose personal names, addresses, phone numbers, emails
- Generalize all specific locations and dates
- Remove all identifying information
- Use placeholders for sensitive data
Moderate
- Protect personal identifiable information
- Generalize specific details when appropriate
- Maintain readability while ensuring privacy
- Remove sensitive financial or health data
Minimal
- Protect obvious sensitive information (SSNs, credit cards)
- Remove personal contact information
- Maintain the natural flow of the text
🛠️ Development
Project Structure
src/
├── index.ts # Main MCP server
├── types.ts # TypeScript type definitions
├── lm-studio-client.ts # LM Studio API client
├── privacy-tools.ts # Privacy-preserving functions
├── analysis-tools.ts # Content analysis tools
├── prompt-templates.ts # Pre-built prompt templates
└── config.ts # Configuration management
Building
# TypeScript compilation
npm run build
# Type checking
npm run typecheck
# Development with auto-reload
npm run dev
Adding Custom Tools
- Define the tool in
index.ts:
this.server.setRequestHandler(CallToolRequestSchema, async (request) => {
// ... existing tools
case 'my-custom-tool':
result = await this.handleCustomTool(args);
break;
});
- Implement the handler:
private async handleCustomTool(args: any): Promise<MCPResponse> {
// Your custom logic here
const response = await this.lmStudio.generateResponse(
args.prompt,
args.system_prompt
);
return {
content: [{ type: 'text', text: response }]
};
}
🔍 Troubleshooting
Common Issues
LM Studio Connection Issues
- Ensure LM Studio is running and the server is started
- Check that the base URL matches your LM Studio configuration
- Verify the model is loaded and available
Performance Issues
- Adjust the
maxConcurrentRequestssetting - Increase
requestTimeoutfor complex requests - Consider using a more powerful local model
Privacy Concerns
- Review and adjust privacy level settings
- Enable strict privacy mode for sensitive data
- Disable logging if handling confidential information
Debug Mode
Set environment variable for verbose logging:
DEBUG=mcp:* npm start
📄 License
MIT License - see LICENSE file for details.
🤝 Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
📞 Support
- Create an issue for bug reports
- Start a discussion for feature requests
- Check the documentation for common questions
Note: This server is designed to work with local LLMs for privacy-sensitive tasks. Always review the privacy settings and ensure they meet your requirements before processing confidential data.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。