
Local Vector Store MCP Server
Enables document search and retrieval using TF-IDF vector similarity across HTML and PDF files. Provides ingest, query, and vector store management capabilities through both HTTP API and MCP stdio interfaces.
README
Local Vector Store & MCP Server
Lightweight vector store with TF‑IDF search, a small FastAPI HTTP API, and an MCP stdio server. Ingests documents from input/html
and input/PDF
and stores artifacts under data/vector_store
.
Usage (Local)
- Install:
pip install -r requirements.txt
- Ingest data:
make ingest
(readsinput/html
andinput/PDF
) - Query via CLI:
make query Q="security maturity" K=5
- HTTP API (after deployment below):
- Health:
curl localhost:8000/health
- Ingest:
curl -X POST localhost:8000/ingest
- Query:
curl -X POST localhost:8000/query -H 'Content-Type: application/json' -d '{"query":"security maturity","k":5}'
- Health:
- Vector Store Manager (interactive):
make manage
- Examples:
status
,docs --limit 10
,chunks input/PDF/example.pdf --limit 5
,search "zero trust" --k 5
,ingest
,purge
,export assets/index_backup.jsonl
,help
,exit
- Examples:
Deployment
Docker (single container)
- Build:
docker build -t local/vector-mcp:latest .
- Run:
docker run -p 8000:8000 -e AUTO_INGEST=1 -v "$PWD/input:/app/input" -v "$PWD/data:/app/data" local/vector-mcp:latest
- Visit
http://localhost:8000/health
or use curl examples above.
- Visit
Docker Compose
- Build images:
make docker-build
- Start services:
make docker-up
(HTTP server on:8000
) - View logs:
make docker-logs
- Ingest inside container:
make docker-ingest
- Query inside container:
make docker-query Q="your query" K=5
- Stop:
make docker-down
MCP Stdio Server
- Local:
make mcp-stdio
(runspython -m src.mcp_server
) - Compose service:
make mcp-stdio-up
(optional background service);make mcp-stdio-down
to remove.
Data Layout
- Input:
input/html/**/*.html
,input/PDF/**/*.pdf
- Artifacts:
data/vector_store/{vectorizer.json,index.jsonl,meta.json}
Notes
- Ensure
input/
contains documents before running ingest. - Set
AUTO_INGEST=1
to ingest on container start (Docker only).
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。