Log Analyzer MCP

Log Analyzer MCP

A Python-based MCP server that enables AI-assisted log file analysis with features for filtering, parsing, and interpreting log outputs, plus executing and analyzing test runs with varying verbosity levels.

Category
访问服务器

README

Log Analyzer MCP

CI codecov PyPI - Version

Overview: Analyze Logs with Ease

Log Analyzer MCP is a powerful Python-based toolkit designed to streamline the way you interact with log files. Whether you're debugging complex applications, monitoring test runs, or simply trying to make sense of verbose log outputs, this tool provides both a Command-Line Interface (CLI) and a Model-Context-Protocol (MCP) server to help you find the insights you need, quickly and efficiently.

Why use Log Analyzer MCP?

  • Simplify Log Analysis: Cut through the noise with flexible parsing, advanced filtering (time-based, content, positional), and configurable context display.
  • Integrate with Your Workflow: Use it as a standalone loganalyzer CLI tool for scripting and direct analysis, or integrate the MCP server with compatible clients like Cursor for an AI-assisted experience.
  • Extensible and Configurable: Define custom log sources, patterns, and search scopes to tailor the analysis to your specific needs.

Key Features

  • Core Log Analysis Engine: Robust backend for parsing and searching various log formats.
  • loganalyzer CLI: Intuitive command-line tool for direct log interaction.
  • MCP Server: Exposes log analysis capabilities to MCP clients, enabling features like:
    • Test log summarization (analyze_tests).
    • Execution of test runs with varying verbosity.
    • Targeted unit test execution (run_unit_test).
    • On-demand code coverage report generation (create_coverage_report).
    • Advanced log searching: all records, time-based, first/last N records.
  • Hatch Integration: For easy development, testing, and dependency management.

Getting Started: Using Log Analyzer MCP

There are two primary ways to use Log Analyzer MCP:

  1. As a Command-Line Tool (loganalyzer):

    • Ideal for direct analysis, scripting, or quick checks.
    • Requires Python 3.9+.
    • For installation and usage, please see the Getting Started Guide.
  2. As an MCP Server (e.g., with Cursor):

    • Integrates log analysis capabilities directly into your AI-assisted development environment.
    • To install and configure the MCP server for use in a client like Cursor, follow the instructions below.

Installing the MCP Server for Client Integration

To integrate the Log Analyzer MCP server with a client application (like Cursor), you'll typically configure the client to launch the log-analyzer-mcp package, which is available on PyPI.

Example Client Configuration (e.g., in .cursor/mcp.json):

{
  "mcpServers": {
    "log_analyzer_mcp_server_prod": {
      "command": "uvx", // uvx is a tool to run python executables from venvs
      "args": [
        "log-analyzer-mcp" // Fetches and runs the latest version from PyPI
        // Or, for a specific version: "log-analyzer-mcp==0.2.0"
      ],
      "env": {
        "PYTHONUNBUFFERED": "1",
        "PYTHONIOENCODING": "utf-8",
        "MCP_LOG_LEVEL": "INFO", // Recommended for production
        // "MCP_LOG_FILE": "/path/to/your/logs/mcp/log_analyzer_mcp_server.log", // Optional
        // --- Configure Log Analyzer specific settings via environment variables ---
        // Example: "LOG_DIRECTORIES": "[\"/path/to/your/app/logs\"]",
        // Example: "LOG_PATTERNS_ERROR": "[\"Exception:.*\"]"
        // (Refer to docs/configuration.md (once created) for all options)
      }
    }
    // You can add other MCP servers here
  }
}

Notes:

  • Replace placeholder paths and consult the Getting Started Guide and Developer Guide for more on configuration options and environment variables.
  • The actual package name on PyPI is log-analyzer-mcp.

Documentation

  • API Reference: Detailed reference for MCP server tools and CLI commands.
  • Getting Started Guide: For users and integrators.
  • Developer Guide: For contributors and those building from source.
  • Refactoring Plan: Technical details on the ongoing evolution of the project.
  • (Upcoming) Configuration Guide: Detailed explanation of all .env and environment variable settings.
  • (Upcoming) CLI Usage Guide: Comprehensive guide to all loganalyzer commands and options.

Contributing

We welcome contributions! Please see CONTRIBUTING.md and the Developer Guide for guidelines on how to set up your environment, test, and contribute.

License

Log Analyzer MCP is licensed under the MIT License with Commons Clause. See LICENSE.md for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选