Log Analyzer MCP

Log Analyzer MCP

An MCP server for AI-powered log analysis that enables parsing, searching, and debugging across nine log formats directly within Claude. It features automated error extraction, sensitive data scanning, and streaming support for large log files.

Category
访问服务器

README

Log Analyzer MCP

<!-- mcp-name: io.github.Fato07/log-analyzer-mcp -->

MCP Registry PyPI version PyPI Downloads License: MIT Python 3.10+ GitHub stars

🔍 Stop copy-pasting logs into AI. Let Claude read them directly.

An MCP server for AI-powered log analysis. Parse, search, and debug log files across 9+ formats — right from Claude Code.

📊 At a Glance

14 MCP tools 9+ log formats
280 tests 81%+ coverage

🎬 Demo

Log Analyzer MCP Demo

Analyzing logs with 14 specialized tools

🤔 Why?

Without log-analyzer-mcp With log-analyzer-mcp
Copy-paste chunks of logs Point Claude at the file
Lose context between pastes Full file access
Manual format parsing Auto-detection
Miss related errors Smart correlation

✨ Features

  • Auto-Detection — Identifies format from 9+ common log types
  • Smart Search — Pattern matching with context, regex, and time filtering
  • Error Extraction — Groups similar errors, captures stack traces
  • Natural Language — Ask questions like "what errors happened today?"
  • Sensitive Data Scan — Detect PII, credentials, and secrets
  • Multi-File Analysis — Correlate events across distributed systems
  • Streaming — Handles 1GB+ files without memory issues

🚀 Quick Start

# Install (adds to Claude Code automatically)
uvx codesdevs-log-analyzer install

Then in Claude Code:

Analyze /var/log/app.log and tell me what's causing the errors

📦 Installation

One-liner (Recommended)

uvx codesdevs-log-analyzer install

Manual

<details> <summary>pip / uv / Claude Code config</summary>

# pip
pip install codesdevs-log-analyzer

# uv
uv tool install codesdevs-log-analyzer

Add to ~/.claude/settings.json:

{
  "mcpServers": {
    "log-analyzer": {
      "command": "uvx",
      "args": ["codesdevs-log-analyzer"]
    }
  }
}

</details>

📋 Supported Formats

Format Example
Syslog Jan 15 10:30:00 hostname process[pid]: message
Apache/Nginx 127.0.0.1 - - [15/Jan/2026:10:30:00] "GET /path" 200
JSON Lines {"timestamp": "...", "level": "ERROR", "message": "..."}
Docker 2026-01-15T10:30:00.123Z stdout message
Python 2026-01-15 10:30:00,123 - module - ERROR - message
Java/Log4j 2026-01-15 10:30:00,123 ERROR [thread] class - message
Kubernetes level=error msg="..." ts=2026-01-15T10:30:00Z
Generic Any line with recognizable timestamp

⚡ Performance

Metric Value
100MB log file < 10 seconds
Memory footprint Streaming (no full load)
Max tested size 1GB+
Format detection < 100ms

🛠️ Available Tools

Tool Description
log_analyzer_parse Detect format and extract metadata
log_analyzer_search Search with context lines
log_analyzer_extract_errors Extract and group errors
log_analyzer_summarize Generate debugging summary
log_analyzer_correlate Find related events
log_analyzer_watch Monitor for new entries
log_analyzer_ask Natural language queries
log_analyzer_scan_sensitive Detect PII/credentials
+ 6 more Full reference →

💡 Examples

Find errors:

Extract all errors from /var/log/app.log, group similar ones

Search with context:

Search for "timeout" in app.log with 5 lines of context

Correlate events:

What happened 60 seconds before each OutOfMemoryError?

Scan for secrets:

Check /var/log/app.log for accidentally logged credentials

🔧 Development

git clone https://github.com/Fato07/log-analyzer-mcp
cd log-analyzer-mcp
uv sync
uv run pytest -v --cov

📈 Star History

Star History Chart

📄 License

MIT License - see LICENSE for details.


<p align="center"> <b>Found this useful?</b> Give it a ⭐ on GitHub!<br><br> <a href="https://github.com/Fato07/log-analyzer-mcp/issues/new?template=bug_report.yml">Report bugs</a> · <a href="https://github.com/Fato07/log-analyzer-mcp/issues/new?template=feature_request.yml">Request features</a> · <a href="https://github.com/Fato07/log-analyzer-mcp/discussions">Discussions</a> · <a href="https://github.com/Fato07/log-analyzer-mcp/blob/main/docs/TOOLS.md">Full docs</a> </p>

<p align="center"> Built by <a href="https://github.com/Fato07">Fato07</a> at <a href="https://codesdevs.io">CodesDevs</a> </p>

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选