Logic-LM MCP Server

Logic-LM MCP Server

Provides symbolic reasoning capabilities by converting natural language logical problems into Answer Set Programming (ASP) format and solving them using the Clingo solver. Enables users to perform formal logical reasoning, verify logical arguments, and get step-by-step explanations for complex logical problems.

Category
访问服务器

README

Logic-LM MCP Server

A Model Context Protocol (MCP) server that provides symbolic reasoning capabilities using Logic-LM framework and Answer Set Programming (ASP).

Attribution

This implementation is inspired by and builds upon the Logic-LLM framework:

Original Research:

This MCP server adapts the Logic-LLM approach for integration with Claude Code and other MCP clients, providing LLM-collaborative symbolic reasoning through Answer Set Programming.

🚀 Quick Start

Prerequisites

  • Python 3.8 or higher

Installation

Choose your preferred installation method:

Option 1: Install from PyPI (Recommended) ✅ LIVE ON PYPI

# Install with pip
pip install logic-lm-mcp-server

# Or install with uv (10-100x faster)
uv pip install logic-lm-mcp-server

📦 Package URL: https://pypi.org/project/logic-lm-mcp-server/

Option 2: Install with Clingo solver (for full functionality)

# Install with optional solver
pip install logic-lm-mcp-server[solver]

# Or with uv
uv pip install logic-lm-mcp-server[solver]

Option 3: Development Installation

git clone https://github.com/stevenwangbe/logic-lm-mcp-server.git
cd logic-lm-mcp-server
pip install -e .

Test Installation

logic-lm-mcp --help

Integration with Claude Code

After installing the package, add it to your Claude Code configuration:

Method 1: Using the console command (after PyPI installation)

claude mcp add logic-lm-mcp logic-lm-mcp

Method 2: Manual configuration

Edit ~/.config/claude/claude_desktop_config.json (create if it doesn't exist):

{
  "mcpServers": {
    "logic-lm": {
      "command": "logic-lm-mcp"
    }
  }
}

Restart Claude Code to load the new MCP server.

  1. Test the integration:

Try these commands in Claude Code:

Check Logic-LM server health
Translate this logic problem to ASP: "All birds can fly. Penguins are birds. Can penguins fly?"

Alternative Integration (Other MCP Clients)

For other MCP-compatible tools, start the server manually:

python start_server.py

The server will run on stdio and provide these tools:

  • get_asp_guidelines - Get ASP translation guidelines
  • translate_to_asp_instructions - Get problem-specific ASP guidance
  • verify_asp_program - Execute ASP programs with Clingo
  • check_solver_health - Verify system health

Overview

Logic-LM MCP Server converts natural language logical problems into Answer Set Programming (ASP) format, solves them using the Clingo solver, and returns human-readable results. It provides a three-stage reasoning pipeline: Problem Formulation → Symbolic Reasoning → Result Interpretation.

Features

  • Natural Language Input: Convert English logical problems to formal representations
  • ASP-Based Reasoning: Uses Answer Set Programming for robust logical inference
  • Clingo Integration: Leverages the Clingo ASP solver for symbolic reasoning
  • Self-Refinement: Iterative improvement of solutions through multiple reasoning passes
  • Template Library: Reusable ASP patterns for common logical structures
  • Fallback Handling: Graceful degradation when solver components unavailable
  • FastMCP Integration: Modern MCP server implementation with type safety

Tools Provided

1. get_asp_guidelines

Get comprehensive ASP translation guidelines (cached for efficiency).

Parameters: None

Returns: Complete ASP Logic Translation Guidelines document with comprehensive instructions for translating natural language into Answer Set Programming format.

2. translate_to_asp_instructions

Get lightweight instructions for translating a specific natural language problem to ASP.

Parameters:

  • problem (string, required): Natural language logical problem to translate

Example:

{
  "problem": "All cats are mammals. Fluffy is a cat. Is Fluffy a mammal?"
}

Response:

{
  "success": true,
  "solution": "TRANSLATE TO ASP: All cats are mammals...\n\nINSTRUCTIONS:\n1. Call get_asp_guidelines() for complete patterns\n2. Analyze logical structure...",
  "confidence": 1.0,
  "method": "lightweight_translation_instructions",
  "metadata": {
    "problem_length": 58,
    "guidelines_cached": false,
    "next_steps": ["Call get_asp_guidelines() if needed", "Generate ASP code", "Call verify_asp_program()"]
  }
}

3. verify_asp_program

Directly verify and solve an ASP program using the Clingo solver.

Parameters:

  • program (string, required): ASP program code to verify and solve
  • max_models (integer, 1-100, default: 10): Maximum number of models to find

Example:

{
  "program": "% Facts\ncat(fluffy).\n\n% Rule: All cats are mammals\nmammal(X) :- cat(X).\n\n% Query\n#show mammal/1.",
  "max_models": 10
}

4. check_solver_health

Check Logic-LM server and Clingo solver health status.

Returns:

  • Server status and component initialization status
  • Clingo availability and version information
  • System capabilities and configuration details
  • Basic functionality test results

Architecture

Core Components

  1. LogicFramework: Main reasoning orchestrator
  2. ClingoSolver: ASP solver interface and management
  3. ASPTemplateLibrary: Reusable logical pattern templates
  4. FastMCP Integration: Modern MCP server implementation

Processing Pipeline

Natural Language Input
         ↓
LLM Translation Instructions (Problem-specific guidance)
         ↓  
ASP Program Generation (LLM-driven with guidelines)
         ↓
Clingo Solver Execution
         ↓
Model Interpretation (Symbolic results)
         ↓
Human-Readable Output

Dependencies

  • Python 3.8+: Core runtime environment
  • FastMCP 2.0+: Modern MCP server framework
  • Pydantic 2.0+: Input validation and type safety
  • Clingo 5.8.0+: ASP solver (automatically detects if missing)

Installation

Option 1: Using pip

pip install -r requirements.txt

Option 2: Manual installation

pip install fastmcp>=2.0.0 pydantic>=2.0.0 clingo>=5.8.0

Option 3: Development setup

git clone <repository-url>
cd logic-lm-mcp-server
pip install -e .

Configuration

The server automatically handles:

  • Clingo solver installation detection
  • Template library loading
  • Environment-specific optimizations
  • Error recovery and fallback modes

Environment Variables

  • No environment variables required
  • Server runs with sensible defaults

Usage Examples

Basic Logical Reasoning

Input: "If it's raining, then the ground is wet. It's raining. Is the ground wet?"
Output: "Yes, the ground is wet. This conclusion follows from modus ponens..."

Syllogistic Reasoning

Input: "All birds can fly. Penguins are birds. Can penguins fly?"
Output: "Based on the given premises, yes. However, this conflicts with real-world knowledge..."

Set-Based Logic

Input: "All members of set A are in set B. X is in set A. Is X in set B?"
Output: "Yes, X is in set B. This follows from set inclusion transitivity..."

Testing

Basic Functionality Test

logic-lm-mcp --help

Test MCP Integration

# Test with Claude Code
claude mcp get logic-lm

Error Handling

  • Clingo Unavailable: Provides informative error messages with installation guidance
  • Invalid ASP Programs: Syntax checking with detailed error messages
  • Solver Timeouts: Graceful handling of complex problems
  • Resource Constraints: Memory and time limit management

Performance

  • Simple Problems: 50-200ms response time
  • Complex Reasoning: 200-1000ms with self-refinement
  • Memory Usage: ~25MB base + ~1MB per concurrent request
  • Concurrent Support: Multiple simultaneous reasoning requests

Troubleshooting

Common Issues

  1. "No module named 'pydantic'" or similar

    • Install dependencies: pip install -r requirements.txt
  2. "Clingo not available"

    • Install Clingo: pip install clingo
    • Server will run with limited functionality if Clingo is missing
  3. Server fails to start

    • Check Python version: python --version (requires 3.8+)
    • Test installation: logic-lm-mcp --help
  4. MCP connection issues

    • Verify MCP server configuration: claude mcp get logic-lm
    • Check installation: logic-lm-mcp --help

Getting Help

  1. Test installation: logic-lm-mcp --help
  2. Check the health endpoint: use check_solver_health tool
  3. Enable debug traces: set include_trace=true in requests

FAQ - Common Setup Errors

"Missing required dependencies" on startup

Error:

❌ Missing required dependencies:
  - fastmcp>=2.0.0
  - pydantic>=2.0.0

Cause: Dependencies not properly installed or virtual environment not activated.

Solution:

# Option 1: Use virtual environment
python3 -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
pip install -r requirements.txt

# Option 2: Install globally
pip install -r requirements.txt

# Option 3: Use venv python directly
venv/bin/python start_server.py

"ModuleNotFoundError: No module named 'fastmcp'"

Error:

Traceback (most recent call last):
  File "<string>", line 1, in <module>
ModuleNotFoundError: No module named 'fastmcp'

Cause: Virtual environment not properly activated or dependencies not installed.

Solution:

# Clean installation
rm -rf venv/
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt

"ModuleNotFoundError: No module named 'pydantic'"

Error:

ModuleNotFoundError: No module named 'pydantic'

Cause: Missing core dependency, often from incomplete installation.

Solution:

pip install pydantic>=2.0.0
# Or reinstall all dependencies
pip install -r requirements.txt

Virtual environment using system Python instead of venv Python

Error: Virtual environment is using the system Python instead of the isolated venv Python.

Symptoms:

  • Packages installed globally instead of in venv
  • Permission errors during package installation
  • which python shows system path after activation
  • Inconsistent behavior between development and production

Causes:

  • Incorrect virtual environment activation
  • Shell aliases overriding PATH (alias python, alias python3)
  • Corrupted virtual environment
  • PATH configuration issues

Solutions:

Option 1: Verify and fix activation

# Check if activation worked properly
source venv/bin/activate
which python  # Should show venv/bin/python, not /usr/bin/python

# If still showing system python, check for aliases
alias python
alias python3

# Remove problematic aliases
unalias python
unalias python3

Option 2: Use explicit venv path (most reliable)

# Instead of relying on activation, use direct paths
venv/bin/python -c "import sys; print(sys.executable)"
venv/bin/pip install package-name

# For our package specifically
venv/bin/python -c "from logic_lm_mcp import LogicFramework; print('✅ Works!')"

Option 3: Recreate virtual environment

# Clean recreation if venv is corrupted
rm -rf venv/
python3 -m venv venv
source venv/bin/activate
which python  # Verify it shows venv/bin/python
pip install logic-lm-mcp-server

Option 4: Use absolute paths in shell

# For Linux/Mac
/full/path/to/venv/bin/python script.py

# For Windows  
C:\full\path\to\venv\Scripts\python.exe script.py

"Clingo not available" but everything else works

Error:

"clingo_available": false

Cause: Clingo ASP solver not installed.

Solution:

# Option 1: Via pip
pip install clingo>=5.8.0

# Option 2: Via conda
conda install -c conda-forge clingo

# Option 3: Check installation
python -c "import clingo; print('Clingo available')"

Server starts but MCP tools not available

Error: MCP connection fails or tools not found.

Cause: Server not properly configured in Claude Code.

Solution:

  1. Verify server is running: python start_server.py
  2. Check Claude Code MCP configuration
  3. Restart Claude Code if needed
  4. Use absolute paths in configuration

Python version compatibility issues

Error:

SyntaxError: invalid syntax

Cause: Python version < 3.8.

Solution:

# Check Python version
python --version  # Must be 3.8+

# Use specific Python version
python3.8 -m venv venv
# or
python3.9 -m venv venv

Background process conflicts

Error: Server won't start, port already in use.

Cause: Previous server instance still running.

Solution:

# Kill existing processes
pkill -f start_server.py
pkill -f logic-lm

# Or find and kill specific process
ps aux | grep start_server
kill <process_id>

File permission errors

Error:

PermissionError: [Errno 13] Permission denied

Cause: Insufficient file permissions.

Solution:

# Fix permissions
chmod +x start_server.py
chmod -R 755 src/

# Or run with appropriate permissions
sudo python start_server.py  # Not recommended

Import path issues

Error:

ModuleNotFoundError: No module named 'src'

Cause: Python can't find local modules.

Solution:

# Run from project root directory
cd /path/to/logic-lm-mcp-server
python start_server.py

# Or use absolute imports
export PYTHONPATH="${PYTHONPATH}:$(pwd)"

Cache or old dependency conflicts

Error: Server uses old logic after code changes.

Cause: Python bytecode cache or old dependencies.

Solution:

# Clear Python cache
find . -type d -name "__pycache__" -exec rm -rf {} +
find . -name "*.pyc" -delete

# Reinstall dependencies cleanly
rm -rf venv/
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt

# Restart Claude Code

Memory or resource issues

Error: Server crashes or becomes unresponsive.

Cause: Insufficient system resources.

Solution:

  • Close other applications to free memory
  • Use smaller max_models parameter in requests
  • Check system requirements (25MB base memory)
  • Monitor server logs for resource warnings

Development

Project Structure

logic-lm-mcp-server/
├── src/
│   ├── __init__.py           # Package initialization
│   ├── logic_lm_mcp/
│   │   ├── __init__.py       # Package initialization
│   │   ├── main.py           # FastMCP server implementation
│   │   ├── logic_framework.py # Core Logic-LM framework
│   │   └── asp_templates.py   # ASP template library
├── pyproject.toml            # Modern Python packaging
├── requirements.txt          # Python dependencies
├── start_server.py          # Development server startup
└── README.md               # This documentation

Adding New Templates

  1. Edit src/logic_lm_mcp/asp_templates.py
  2. Add new template to _initialize_templates() method
  3. Test with logic-lm-mcp --help and MCP tools

Extending Logic Framework

  1. Edit src/logic_lm_mcp/logic_framework.py
  2. Add new reasoning methods to LogicFramework class
  3. Update FastMCP tools in src/logic_lm_mcp/main.py

Resources

ASP Templates

The server provides access to ASP templates via MCP resources:

  • asp-templates://list - List all available templates
  • asp-templates://info/{template_name} - Get template information
  • asp-templates://template/{template_name} - Get template code

Available Templates

  • universal: Universal quantification (All X are Y)
  • conditional: Conditional rules (If X then Y)
  • syllogism: Basic syllogistic reasoning
  • existential: Existential quantification (Some X are Y)
  • negation: Negation patterns (No X are Y)
  • set_membership: Set membership and relationships
  • transitive: Transitive relationships

License

MIT License - See LICENSE file for details.

Support

For issues, feature requests, or questions about Logic-LM reasoning capabilities, please:

  1. Test installation: logic-lm-mcp --help
  2. Check the troubleshooting section above
  3. Open an issue in the repository with:
    • Python version
    • Operating system
    • Error messages
    • Installation method used (pip/uv)

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选