Logstash MCP Server

Logstash MCP Server

A Model Context Protocol server that provides comprehensive tools for monitoring and identifying performance bottlenecks in Logstash instances through an interactive web UI and JSON-RPC interface.

Category
访问服务器

README

IMPORTANT

This repository is vibe coded, AI generated and not tested properly. Use it with your own risk.

Logstash MCP Server

A Model Context Protocol (MCP) server for interacting with Logstash instances. This server provides comprehensive tools for monitoring and defining Logstash instance performance bottleneck.

Web UI

The project includes a web-based user interface for easy interaction with your Logstash instance.

Running the Web UI

  1. Start the web interface:
python3 web_ui.py
  1. Open your browser and navigate to:
http://localhost:5001

Web UI Screenshot

Web UI Features

The web interface provides:

  • Interactive Dashboard: Visual interface to access all Logstash monitoring tools
  • Real-time Monitoring: Check connectivity, node stats, and pipeline performance
  • Health Analysis: Comprehensive health checks with visual feedback
  • Pipeline Management: View statistics for individual or all pipelines
  • Performance Debugging: Hot threads analysis and JVM statistics
  • Plugin Management: Browse installed Logstash plugins

Web UI Configuration

The web UI uses the same configuration as the MCP server:

  • Default Logstash URL: http://localhost:9600
  • Override with: LOGSTASH_API_BASE environment variable
  • Web interface runs on: http://localhost:5001

Example with custom Logstash URL:

export LOGSTASH_API_BASE="http://your-logstash-host:9600"
python3 web_ui.py

Features

Monitoring Tools

  • Node Information: Get Logstash version, build info, and settings
  • Node Statistics: JVM, process, and pipeline metrics
  • Pipeline Statistics: Monitor individual or all pipeline performance
  • Hot Threads: Debug performance issues with thread analysis
  • Health Check: Comprehensive health assessment with recommendations
  • Connectivity Check: Verify connection to Logstash with detailed diagnostics

Management Tools

  • Pipeline Reload: Reload specific pipeline configurations
  • Plugin Listing: View all installed Logstash plugins
  • JVM Statistics: Detailed memory and garbage collection metrics
  • Grok Patterns: List available Grok patterns for log parsing

Installation

  1. Install dependencies:
pip install -r requirements.txt
  1. Set up environment variables (optional):
export LOGSTASH_API_BASE="http://your-logstash-host:9600"

Configuration

The server uses the following default configuration:

  • Logstash Host: localhost
  • Logstash Port: 9600
  • API Base URL: http://localhost:9600

You can override the API base URL using the LOGSTASH_API_BASE environment variable.

Available Tools (12 Total)

logstash_check_connectivity

Check connectivity to the Logstash instance with detailed connection status, response times, and error handling.

  • Returns: Connection status, URL, version, host, response time, error details, and troubleshooting suggestions

logstash_node_info

Get Logstash node information including version, build info, and settings.

logstash_node_stats

Get comprehensive node statistics including JVM, process, and pipeline metrics.

  • Parameters: human (boolean, default: true)

logstash_pipelines_stats

Get statistics for all Logstash pipelines.

  • Parameters: human (boolean, default: true)

logstash_pipeline_stats

Get statistics for a specific pipeline.

  • Parameters: id (string, required), human (boolean, default: true)

logstash_hot_threads

Get hot threads information for debugging performance issues.

  • Parameters: threads (integer, default: 3), human (boolean, default: true)

logstash_plugins

List all installed Logstash plugins.

check_backpressure

Check queue backpressure metrics to monitor pipeline performance and congestion.

  • Parameters: human (boolean, default: true)

logstash_health_check

Perform comprehensive health check with analysis and recommendations.

logstash_jvm_stats

Get detailed JVM statistics for memory analysis.

  • Parameters: human (boolean, default: true)

logstash_health_report

Get detailed health report from Logstash.

flow_metrics

Get detailed flow metrics including throughput, backpressure, and worker concurrency.

  • Parameters: human (boolean, default: true)

Health Check Analysis

The health check tool analyzes:

  • Connectivity Verification: Tests connection to Logstash before other checks
  • JVM Memory Usage: Warns if heap usage exceeds 80%
  • Pipeline Performance: Detects pipelines with filtered but no output events
  • Queue Usage: Identifies large queue sizes that may impact performance

Quick Start Commands

After starting the server with python3 logstash_mcp_server.py, use these JSON-RPC commands:

1. Initialize (Required First)

{"jsonrpc": "2.0", "id": 0, "method": "initialize", "params": {"protocolVersion": "2024-11-05", "capabilities": {}, "clientInfo": {"name": "test-client", "version": "1.0.0"}}}

2. Check Connectivity

{"jsonrpc": "2.0", "id": 1, "method": "tools/call", "params": {"name": "logstash_check_connectivity", "arguments": {}}}

3. Health Check

{"jsonrpc": "2.0", "id": 2, "method": "tools/call", "params": {"name": "logstash_health_check", "arguments": {}}}

4. List All Tools

{"jsonrpc": "2.0", "id": 3, "method": "tools/list"}

5. Get Node Info

{"jsonrpc": "2.0", "id": 4, "method": "tools/call", "params": {"name": "logstash_node_info", "arguments": {}}}

Usage Examples

Basic Health Check

# The MCP server will automatically analyze:
# - JVM memory usage
# - Pipeline performance
# - Queue statistics
# - Provide recommendations for optimization

Pipeline Monitoring

# Monitor specific pipeline performance
# Get detailed statistics for troubleshooting
# Track event processing rates and errors

Performance Debugging

# Use hot threads analysis to identify bottlenecks
# Monitor JVM statistics for memory issues
# Track pipeline queue usage

Integration with ELK Stack

This MCP server is designed to work alongside Elasticsearch diagnostics and can help:

  • Monitor Logstash performance feeding into your Elasticsearch cluster
  • Identify pipeline bottlenecks that may contribute to indexing delays
  • Optimize Logstash configuration for better cluster performance

Based on your Elasticsearch cluster analysis showing high shard counts, ensure your Logstash pipelines are optimized for efficient indexing patterns.

Error Handling

The server includes comprehensive error handling for:

  • Connection failures to Logstash API
  • Invalid pipeline IDs
  • API response errors
  • Network timeouts
  • Detailed error messages with troubleshooting suggestions

Testing

Run the test suite to verify everything works:

python3 test_mcp_server.py

The test suite includes:

  • Server initialization tests
  • Tool listing verification
  • Mocked health check tests
  • Error handling validation

Security Considerations

  • The server connects to Logstash API endpoints
  • Ensure proper network security between MCP server and Logstash
  • Consider authentication if your Logstash instance requires it
  • Monitor API access logs for security auditing

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选