Look 4 Fundings
Provides basic text manipulation and analysis tools including word reversal and character counting. Designed for integration with Le Chat and other MCP-compatible clients.
README
Look 4 Fundings - EU Funding Crawler MCP Server
A Model Context Protocol (MCP) server that provides tools for searching EU funding opportunities through the official EU Funding & Tenders Portal API. This server is designed to work with Le Chat and other MCP-compatible clients.
Features
- EU Funding Search: Search for active EU funding opportunities by keyword
- Comprehensive Data: Get detailed information including title, summary, deadline, budget, and status
- Official API Integration: Uses the official EU Funding & Tenders Portal REST API
- Le Chat Integration: Compatible with Le Chat's MCP connector system
Prerequisites
- Python 3.12 or higher
uvpackage manager
Installation
- Clone or download this repository
- Install dependencies using
uv:
uv sync
Running the Server
Method 1: Direct Python Execution
Run the server directly with Python:
python main.py
The server will start on http://localhost:3000 and use the streamable-http transport for Le Chat compatibility.
Method 2: Using LocalTunnel for External Access
To expose your local server to the internet (required for Le Chat integration), use lt (LocalTunnel):
- Install LocalTunnel globally:
npm install -g localtunnel
- In one terminal, start the MCP server:
python main.py
- In another terminal, expose the server using LocalTunnel:
lt --port 3000
This will provide you with a public URL like https://legal-bugs-chew.loca.lt that you can use to connect to your MCP server.
Le Chat Integration
To connect this MCP server to Le Chat:
- Start your MCP server using one of the methods above
- If using LocalTunnel, note the provided URL (e.g.,
https://legal-bugs-chew.loca.lt) - In Le Chat, go to the connectors section
- Add a new MCP connector with the URL:
https://your-tunnel-url.loca.lt/mcp - The server will be available for use in Le Chat
Available Tools
search_eu_fundings
Searches for EU funding opportunities by keyword and returns detailed funding information.
Parameters:
keyword(str): The search keyword (e.g., "AI", "machine learning", "renewable energy") - defaults to "AI"page_size(int): Number of results to return per page - defaults to 20
Returns:
List[PublicFunding]: A list of PublicFunding objects containing:title(str): Title of the funding opportunityurl(str): Direct link to the funding pagesummary(str): Summary/objective of the fundingdeadline(str): Application deadlinestatus(str): Current status of the fundingbudget(str): Budget information with currency
Example:
Input: keyword="artificial intelligence", page_size=10
Output: List of 10 EU funding opportunities related to AI
Note: Returns an empty list if no results are found or if an error occurs during the API request.
Development
This project uses:
- FastMCP: For building the MCP server
- Streamable HTTP: For Le Chat compatibility
- Python 3.12+: For modern Python features
- Pydantic: For data validation and serialization
- Requests: For HTTP API calls to the EU Funding Portal
- EU Funding & Tenders Portal API: Official REST API for funding data
Project Structure
main.py: MCP server setup and tool definitionscrawler.py: EUFundingCrawler class for API interactionstype.py: Pydantic models for data structurespyproject.toml: Project dependencies and configuration
Troubleshooting
- Port already in use: If port 3000 is occupied, you can modify the port in
main.pyand update the LocalTunnel command accordingly - LocalTunnel issues: Make sure LocalTunnel is installed globally and the tunnel URL is accessible
- Le Chat connection: Ensure the MCP endpoint URL includes
/mcpat the end - API errors: The crawler uses the official EU API which may have rate limits or temporary unavailability
- No results found: Try different keywords or check if the API is responding correctly
License
This project is open source and available under the MIT License.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。