Looking-Glass-MCP

Looking-Glass-MCP

A Model Context Protocol server that provides network probing capabilities through Looking Glass vantage points, allowing users to perform global network diagnostics like ping, BGP route lookups, and traceroute operations from multiple locations worldwide.

Category
访问服务器

README

Looking-Glass-MCP

The first Looking Glass Model Context Protocol (MCP) server! 🎉

Overview

Looking-Glass-MCP is a revolutionary MCP server that provides network probing capabilities through Looking Glass (LG) vantage points. This tool allows you to perform network diagnostics and measurements from multiple global locations using a simple, standardized interface.

Features

  • Multi-VP Probing: Execute network commands from multiple Looking Glass vantage points simultaneously
  • Auto VP Selection: Automatically select the optimal number of vantage points for your measurements
  • Comprehensive Commands: Support for ping, BGP route lookups, and traceroute operations
  • Global Coverage: Access to Looking Glass servers worldwide
  • Async Operations: Built with async/await for efficient concurrent operations
  • Error Handling: Robust error handling and timeout management

Available Tools

lg_probing_user_defined

Send probing commands to a target IP using a specific list of LG vantage points.

Parameters:

  • vp_id_list: List of Looking Glass VP identifiers
  • cmd: Command type (ping, show ip bgp, traceroute)
  • target_ip: Destination IP address for probing

lg_probing_auto_select

Send probing commands using automatically selected vantage points.

Parameters:

  • vp_num: Number of vantage points to use
  • cmd: Command type (ping, bgp, traceroute)
  • target_ip: Destination IP address for probing

list_all_lgs

Retrieve information about all available Looking Glass vantage points.

Requirements

  • Python 3.13+
  • httpx >= 0.28.1
  • mcp[cli] >= 1.9.4

Installation

pip install -r requirements.txt

Usage Example: CDN Performance Analysis

This example demonstrates how to use Looking-Glass-MCP for CDN performance optimization by analyzing network performance to Google's DNS service (8.8.8.8) from multiple global locations.

Step 1: List Available Vantage Points

# Get all available Looking Glass vantage points
result = await list_all_lgs()

Step 2: Select Global Vantage Points

We selected 5 diverse global locations for comprehensive analysis:

  • US (Seattle): VP ID 71 - North America
  • Switzerland: VP ID 164 - Europe
  • Singapore: VP ID 62 - Asia-Pacific
  • Australia (Sydney): VP ID 125 - Oceania
  • Brazil (Campo Grande): VP ID 108 - South America

Step 3: Execute Network Probing

# Run ping tests from 5 global locations
ping_results = await lg_probing_user_defined(
    vp_id_list=["71", "164", "62", "125", "108"],
    cmd="ping",
    target_ip="8.8.8.8"
)

# Run traceroute analysis
traceroute_results = await lg_probing_user_defined(
    vp_id_list=["71", "164", "62", "125", "108"],
    cmd="traceroute", 
    target_ip="8.8.8.8"
)

# Analyze BGP routing information
bgp_results = await lg_probing_user_defined(
    vp_id_list=["71", "164", "62", "125", "108"],
    cmd="bgp",
    target_ip="8.8.8.8"
)

Step 4: LLM-Generated Analysis Results

📊 Example Output: The following analysis was automatically generated by an LLM using the Looking-Glass-MCP tool results. This demonstrates how AI can transform raw network data into actionable business insights.

<details> <summary><strong>🤖 LLM Analysis Output</strong> (Click to expand)</summary>

🌍 Global Network Performance Summary

Location Country Latency (avg) Packet Loss Performance Rating
Seattle, US US ~1-4ms 0% ⭐⭐⭐⭐⭐ Excellent
Switzerland CH ~1ms 0% ⭐⭐⭐⭐⭐ Excellent
Singapore SG ~2.1ms 0% ⭐⭐⭐⭐⭐ Excellent
Sydney, Australia AU ~0.54ms 0% ⭐⭐⭐⭐⭐ Outstanding
Campo Grande, Brazil BR ~19.8ms 0% ⭐⭐⭐ Good

🔍 Key Findings

Best Performance:

  • Australia (Sydney): Exceptionally low latency (~0.54ms) - direct Google peering
  • Switzerland & US: Sub-millisecond to low single-digit latency

Routing Analysis:

  • Australia: 6 hops, direct peering with Google infrastructure
  • Singapore: 4 hops, excellent Google edge presence
  • Switzerland: 4 hops, optimal European routing
  • Brazil: 15+ hops, complex ISP routing causing higher latency

BGP Intelligence:

  • All locations show AS15169 (Google) as origin
  • Multiple path redundancy visible
  • Local peering arrangements in major markets

🎯 CDN Optimization Recommendations

Immediate Actions:

  1. Prioritize APAC: Australia and Singapore show excellent performance
  2. European Expansion: Switzerland performance suggests good connectivity
  3. Brazil Improvement: Higher latency indicates need for local presence

Strategic Recommendations:

  1. Multi-CDN Strategy: Deploy edge servers in Sydney, Singapore, and Europe
  2. Peering Optimization: Establish direct peering with major ISPs in Brazil
  3. Performance Monitoring: Use these 5 locations as baseline monitoring points

Expected Impact:

  • Australia/Singapore: Maintain sub-2ms response times
  • Europe: Target sub-5ms response times
  • Brazil: Improve from 20ms to <10ms with local presence

</details>

💡 Key Insight: This example shows how Looking-Glass-MCP enables AI assistants to automatically analyze complex network data and provide actionable business recommendations - transforming raw technical metrics into strategic insights.

Real-World Applications

This Looking Glass MCP tool is perfect for:

  • CDN Performance Optimization: Analyze global performance patterns
  • Network Troubleshooting: Identify routing issues from multiple perspectives
  • DDoS Detection: Monitor traffic patterns across vantage points
  • Competitive Analysis: Benchmark against competitor infrastructure
  • SLA Monitoring: Validate service level agreements globally
  • Research: Academic studies on internet topology and performance

Getting Started

  1. Install dependencies
  2. Configure your MCP client to use Looking-Glass-MCP
  3. Start analyzing global network performance!

The power of Looking Glass combined with MCP's standardized interface makes network analysis accessible and actionable for any application requiring global network intelligence.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选