
Looking-Glass-MCP
A Model Context Protocol server that provides network probing capabilities through Looking Glass vantage points, allowing users to perform global network diagnostics like ping, BGP route lookups, and traceroute operations from multiple locations worldwide.
README
Looking-Glass-MCP
The first Looking Glass Model Context Protocol (MCP) server! 🎉
Overview
Looking-Glass-MCP is a revolutionary MCP server that provides network probing capabilities through Looking Glass (LG) vantage points. This tool allows you to perform network diagnostics and measurements from multiple global locations using a simple, standardized interface.
Features
- Multi-VP Probing: Execute network commands from multiple Looking Glass vantage points simultaneously
- Auto VP Selection: Automatically select the optimal number of vantage points for your measurements
- Comprehensive Commands: Support for ping, BGP route lookups, and traceroute operations
- Global Coverage: Access to Looking Glass servers worldwide
- Async Operations: Built with async/await for efficient concurrent operations
- Error Handling: Robust error handling and timeout management
Available Tools
lg_probing_user_defined
Send probing commands to a target IP using a specific list of LG vantage points.
Parameters:
vp_id_list
: List of Looking Glass VP identifierscmd
: Command type (ping
,show ip bgp
,traceroute
)target_ip
: Destination IP address for probing
lg_probing_auto_select
Send probing commands using automatically selected vantage points.
Parameters:
vp_num
: Number of vantage points to usecmd
: Command type (ping
,bgp
,traceroute
)target_ip
: Destination IP address for probing
list_all_lgs
Retrieve information about all available Looking Glass vantage points.
Requirements
- Python 3.13+
- httpx >= 0.28.1
- mcp[cli] >= 1.9.4
Installation
pip install -r requirements.txt
Usage Example: CDN Performance Analysis
This example demonstrates how to use Looking-Glass-MCP for CDN performance optimization by analyzing network performance to Google's DNS service (8.8.8.8) from multiple global locations.
Step 1: List Available Vantage Points
# Get all available Looking Glass vantage points
result = await list_all_lgs()
Step 2: Select Global Vantage Points
We selected 5 diverse global locations for comprehensive analysis:
- US (Seattle): VP ID 71 - North America
- Switzerland: VP ID 164 - Europe
- Singapore: VP ID 62 - Asia-Pacific
- Australia (Sydney): VP ID 125 - Oceania
- Brazil (Campo Grande): VP ID 108 - South America
Step 3: Execute Network Probing
# Run ping tests from 5 global locations
ping_results = await lg_probing_user_defined(
vp_id_list=["71", "164", "62", "125", "108"],
cmd="ping",
target_ip="8.8.8.8"
)
# Run traceroute analysis
traceroute_results = await lg_probing_user_defined(
vp_id_list=["71", "164", "62", "125", "108"],
cmd="traceroute",
target_ip="8.8.8.8"
)
# Analyze BGP routing information
bgp_results = await lg_probing_user_defined(
vp_id_list=["71", "164", "62", "125", "108"],
cmd="bgp",
target_ip="8.8.8.8"
)
Step 4: LLM-Generated Analysis Results
📊 Example Output: The following analysis was automatically generated by an LLM using the Looking-Glass-MCP tool results. This demonstrates how AI can transform raw network data into actionable business insights.
<details> <summary><strong>🤖 LLM Analysis Output</strong> (Click to expand)</summary>
🌍 Global Network Performance Summary
Location | Country | Latency (avg) | Packet Loss | Performance Rating |
---|---|---|---|---|
Seattle, US | US | ~1-4ms | 0% | ⭐⭐⭐⭐⭐ Excellent |
Switzerland | CH | ~1ms | 0% | ⭐⭐⭐⭐⭐ Excellent |
Singapore | SG | ~2.1ms | 0% | ⭐⭐⭐⭐⭐ Excellent |
Sydney, Australia | AU | ~0.54ms | 0% | ⭐⭐⭐⭐⭐ Outstanding |
Campo Grande, Brazil | BR | ~19.8ms | 0% | ⭐⭐⭐ Good |
🔍 Key Findings
Best Performance:
- Australia (Sydney): Exceptionally low latency (~0.54ms) - direct Google peering
- Switzerland & US: Sub-millisecond to low single-digit latency
Routing Analysis:
- Australia: 6 hops, direct peering with Google infrastructure
- Singapore: 4 hops, excellent Google edge presence
- Switzerland: 4 hops, optimal European routing
- Brazil: 15+ hops, complex ISP routing causing higher latency
BGP Intelligence:
- All locations show AS15169 (Google) as origin
- Multiple path redundancy visible
- Local peering arrangements in major markets
🎯 CDN Optimization Recommendations
Immediate Actions:
- Prioritize APAC: Australia and Singapore show excellent performance
- European Expansion: Switzerland performance suggests good connectivity
- Brazil Improvement: Higher latency indicates need for local presence
Strategic Recommendations:
- Multi-CDN Strategy: Deploy edge servers in Sydney, Singapore, and Europe
- Peering Optimization: Establish direct peering with major ISPs in Brazil
- Performance Monitoring: Use these 5 locations as baseline monitoring points
Expected Impact:
- Australia/Singapore: Maintain sub-2ms response times
- Europe: Target sub-5ms response times
- Brazil: Improve from 20ms to <10ms with local presence
</details>
💡 Key Insight: This example shows how Looking-Glass-MCP enables AI assistants to automatically analyze complex network data and provide actionable business recommendations - transforming raw technical metrics into strategic insights.
Real-World Applications
This Looking Glass MCP tool is perfect for:
- CDN Performance Optimization: Analyze global performance patterns
- Network Troubleshooting: Identify routing issues from multiple perspectives
- DDoS Detection: Monitor traffic patterns across vantage points
- Competitive Analysis: Benchmark against competitor infrastructure
- SLA Monitoring: Validate service level agreements globally
- Research: Academic studies on internet topology and performance
Getting Started
- Install dependencies
- Configure your MCP client to use Looking-Glass-MCP
- Start analyzing global network performance!
The power of Looking Glass combined with MCP's standardized interface makes network analysis accessible and actionable for any application requiring global network intelligence.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。