Loop MCP Server
Enables LLMs to process arrays item-by-item or in batches with a specific task, storing and retrieving results with optional summarization after completion.
README
Loop MCP Server
An MCP (Model Context Protocol) server that enables LLMs to process arrays item by item with a specific task.
Overview
This MCP server provides tools for:
- Initializing an array with a task description
- Fetching items one by one or in batches for processing
- Storing results for each processed item or batch
- Retrieving all results (only after all items are processed)
- Optional result summarization
- Configurable batch size for efficient processing
Installation
npm install
Usage
Running the Server
npm start
Available Tools
-
initialize_array - Set up the array and task
array: The array of items to processtask: Description of what to do with each itembatchSize(optional): Number of items to process in each batch (default: 1)
-
get_next_item - Get the next item to process
- Returns: Current item, index, task, and remaining count
-
get_next_batch - Get the next batch of items based on batch size
- Returns: Array of items, indices, task, and remaining count
-
store_result - Store the result of processing
result: The processing result (single value or array for batch processing)
-
get_all_results - Get all results after completion
summarize(optional): Include a summary- Note: This will error if processing is not complete
-
reset - Clear the current processing state
Example Workflows
Single Item Processing
// 1. Initialize
await callTool('initialize_array', {
array: [1, 2, 3, 4, 5],
task: 'Square each number'
});
// 2. Process each item
while (true) {
const item = await callTool('get_next_item');
if (item.text === 'All items have been processed.') break;
// Process the item (e.g., square it)
const result = item.value * item.value;
await callTool('store_result', { result });
}
// 3. Get final results
const results = await callTool('get_all_results', { summarize: true });
Batch Processing
// 1. Initialize with batch size
await callTool('initialize_array', {
array: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
task: 'Double each number',
batchSize: 3
});
// 2. Process in batches
while (true) {
const batch = await callTool('get_next_batch');
if (batch.text === 'All items have been processed.') break;
// Process the batch
const results = batch.items.map(item => item * 2);
await callTool('store_result', { result: results });
}
// 3. Get final results
const results = await callTool('get_all_results', { summarize: true });
Running the Example
node example-client.js
Integration with Claude Desktop
Add to your Claude Desktop configuration:
{
"mcpServers": {
"loop-processor": {
"command": "node",
"args": ["/path/to/loop_mcp/server.js"]
}
}
}
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。