lsfusion-mcp

lsfusion-mcp

Enables RAG-powered documentation search using OpenAI embeddings and Pinecone vector database. Provides an extensible framework for adding additional tools with support for both local STDIO and production HTTP transports.

Category
访问服务器

README

lsfusion-mcp

An extensible MCP server hosting multiple tools. Ships with retrieve_docs(query: string) for RAG search (OpenAI embeddings -> Pinecone), and a structure ready for future tools (e.g., code syntax checks).

Transports:

  • STDIO for local development / desktop MCP clients.
  • Streamable HTTP for production via Uvicorn (mounted at /mcp).

Quickstart (local)

python -m venv .venv && source .venv/bin/activate
pip install -r requirements.txt

export OPENAI_API_KEY=sk-...        PINECONE_API_KEY=...        PINECONE_INDEX=lsfusion        PINECONE_NAMESPACE=""

# STDIO transport
python server.py stdio

# HTTP transport
python server.py http --host 0.0.0.0 --port 8000

Claude Desktop / MCP Inspector (STDIO)

mcp install server.py
mcp dev server.py

Adding new tools

Create a new module under tools/ and register it with @mcp.tool() in server.py (or build an auto-discovery if you prefer). Keep tool signatures simple and JSON-serializable.

Contract / output for retrieve_docs

Returns an array of objects:

[
  { "source": "documentation-how-to", "text": "....", "score": 0.73 },
  { "source": "articles", "text": "....", "score": 0.69 }
]

Sorted by score descending.

Environment variables

  • OPENAI_API_KEY — OpenAI API key
  • PINECONE_API_KEY — Pinecone API key
  • PINECONE_INDEX — Pinecone index name (default lsfusion)
  • PINECONE_NAMESPACE — Pinecone namespace (default empty)
  • EMBEDDING_MODEL — OpenAI embedding model (default text-embedding-3-large)

Docker

Build and run:

docker build -t lsfusion/mcp:latest .
docker run --rm -p 8000:8000 \
  -e OPENAI_API_KEY=$OPENAI_API_KEY \
  -e PINECONE_API_KEY=$PINECONE_API_KEY \
  lsfusion/mcp:latest

Or via Compose:

docker compose up --build

Production secrets (where to store keys)

Do not hardcode secrets. Options:

  1. Kubernetes Secrets + external secret store

    • Store secrets in AWS Secrets Manager / GCP Secret Manager / HashiCorp Vault.
    • Sync into K8s as Secret via External Secrets Operator.
    • Mount as env vars in the Deployment:
      env:
        - name: OPENAI_API_KEY
          valueFrom: { secretKeyRef: { name: mcp-secrets, key: openai } }
        - name: PINECONE_API_KEY
          valueFrom: { secretKeyRef: { name: mcp-secrets, key: pinecone } }
      
  2. Docker Swarm / Compose secrets

    • Use secrets: and mount files into the container, then export into env at entrypoint:
      services:
        mcp:
          image: lsfusion/mcp:latest
          secrets: [openai_key, pinecone_key]
      secrets:
        openai_key: { file: ./secrets/openai_key.txt }
        pinecone_key: { file: ./secrets/pinecone_key.txt }
      
    • Read them in an entrypoint script:
      export OPENAI_API_KEY="$(cat /run/secrets/openai_key)"
      export PINECONE_API_KEY="$(cat /run/secrets/pinecone_key)"
      exec python server.py http --host 0.0.0.0 --port 8000
      
  3. Cloud run / App services (ECS, Cloud Run, App Service)

    • Inject as environment variables wired to a managed secret store (e.g., AWS Parameter Store / Secrets Manager).
    • Rotate periodically; grant least-privilege IAM.
  4. CI/CD (GitHub Actions)

    • Store in Actions Secrets.
    • At build/deploy time pass them into the container as env vars or bake only into the runtime environment (never into the image).

This app reads credentials from environment variables, so your orchestrator should inject them from a secure store. Prefer secret stores over committing .env files.

Hardening checklist

  • Run as non-root (done in Dockerfile).
  • Keep logs to stdout/stderr; in STDIO mode, avoid extra prints (MCP uses stdio).
  • Set request timeouts and retries in your MCP client / reverse proxy.
  • Add health endpoint (optional) and readiness checks on /mcp handshake.

HTTP transport configuration (FastMCP)

FastMCP reads host/port from environment variables:

  • MCP_HOST (default: 127.0.0.1)
  • MCP_PORT (default: 8000)

Examples:

Local run

export OPENAI_API_KEY=sk-... PINECONE_API_KEY=...
export MCP_HOST=0.0.0.0 MCP_PORT=8000
python server.py http

Docker

docker run --rm -p 8000:8000 \  -e OPENAI_API_KEY=$OPENAI_API_KEY \  -e PINECONE_API_KEY=$PINECONE_API_KEY \  -e MCP_HOST=0.0.0.0 \  -e MCP_PORT=8000 \  ghcr.io/<org>/<repo>/lsfusion-mcp:latest

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选